
Foundations and TrendsR© in Databases
Vol. 8, No. 1-2 (2016) 1–130
c© 2017 F. Faerber, A. Kemper, P. Å Larson,

J. Levandoski, T. Neumann, and A. Pavlo
DOI: 10.1561/1900000058

Main Memory Database Systems

Franz Faerber
SAP

franz.faerber@sap.com

Alfons Kemper
Technische Universität München

alfons.kemper@in.tum.de

Per-Åke Larson
Microsoft Research
palarson@acm.org

Justin Levandoski
Microsoft Research

justin.levandoski@microsoft.com

Thomas Neumann
Technische Universität München
thomas.neumann@in.tum.de

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

Contents

1 Introduction 2

2 History and Trends 6
2.1 History . 6
2.2 Trends . 10

3 Issues and Architectural Choices 12
3.1 Data Organization and Layout 12
3.2 Indexing . 18
3.3 Concurrency Control . 23
3.4 Durability and Recovery 28
3.5 Query Processing and Compilation 31

4 Systems 35
4.1 SQL Server Hekaton . 35
4.2 H-Store and VoltDB . 47
4.3 HyPer . 62
4.4 SAP HANA . 86
4.5 Other Systems . 101

5 Active Research and Future Directions 106
5.1 Cold Data Management 106

ii

iii

5.2 Transactional Memory . 110
5.3 Non-Volatile RAM . 112

References 115

Abstract

This article provides an overview of recent developments in main-
memory database systems. With growing memory sizes and memory
prices dropping by a factor of 10 every 5 years, data having a “pri-
mary home” in memory is now a reality. Main-memory databases es-
chew many of the traditional architectural pillars of relational database
systems that optimized for disk-resident data. The result of these
memory-optimized designs are systems that feature several innovative
approaches to fundamental issues (e.g., concurrency control, query pro-
cessing) that achieve orders of magnitude performance improvements
over traditional designs. Our survey covers five main issues and archi-
tectural choices that need to be made when building a high performance
main-memory optimized database: data organization and storage, in-
dexing, concurrency control, durability and recovery techniques, and
query processing and compilation. We focus our survey on four com-
mercial and research systems: H-Store/VoltDB, Hekaton, HyPer, and
SAP HANA. These systems are diverse in their design choices and form
a representative sample of the state of the art in main-memory database
systems. We also cover other commercial and academic systems, along
with current and future research trends.

F. Faerber, A. Kemper, P. Å Larson, J. Levandoski, T. Neumann, and A. Pavlo.
Main Memory Database Systems. Foundations and TrendsR© in Databases, vol. 8,
no. 1-2, pp. 1–130, 2016.
DOI: 10.1561/1900000058.

1
Introduction

Research and development of main-memory database systems started
in the early eighties [37], with several commercial systems appearing in
the nineties (e.g., TimesTen [146], P*Time [28], DataBlitz [16]). Many
of these systems were used in targeted, performance-critical applica-
tions, mainly in telecommunications and finance. The price and capac-
ity of memory during this time period limited applicability of many
of these engines, thus main-memory systems did not - at the time -
succeed as a general data processing solution.

Recently, two trends have made this field interesting again: memory
prices and multi-core parallelism. For the last 30 years memory prices
have dropped by a factor of 10 every 5 years. A server with 32 cores
and 1 TB of memory now costs around $40K. Machines such as these
make it feasible to fit most (if not all) of the world’s OLTP workloads1
comfortably into memory at a reasonable price. In addition, modern
CPUs provide a staggering amount of raw parallelism. Vanilla CPUs
contain at least 8 cores, and it is common for modern servers to contain
two to four CPU sockets (16 to 32 cores). Core counts continue to rise,
with Intel currently shipping a Xeon CPU with 18 cores [1].

Such parallelism coupled with the ability to (practically) store data
completely in memory has brought about a recent flurry of research
and development into main-memory databases. The result has been
astounding. Prominent research systems such as H-Store [142] and

1The focus of this survey is primarily on main-memory OLTP databases.

2

3

HyPeR [72] reinvigorated research into main-memory and multi-core
data processing techniques. Most major database vendors now have
an in-memory database solution, such as SAP HANA [137], Oracle
TimesTen [74], and Microsoft SQL Server Hekaton [38]. In addition, a
number of startups such as VoltDB [143] and MemSQL [2] have carved
out a niche in the database vendor landscape.

The result of this research and development is a new breed of
database system with a radically different design when compared to a
traditional disk-based relational system. These systems abandon many
of the “textbook” design tenets in favor of new (or revisited) approaches
to achieve high performance on modern hardware. For instance, the fol-
lowing examples provide an idea of how different these systems are:

• Data organization and indexing. A pervasive trend in all
systems is to avoid page-based indirection through a buffer pool
and store only records in memory. Indexes usually store direct
pointers to records. Several systems also implement novel index-
ing methods that optimize for CPU cache efficiency [85] as well
as multi-core parallelism using latch-free designs [89].

• Concurrency control. Most systems avoid pessimistic lock-
based concurrency control due to blocking and context switch
overheads. Instead, some systems use a multi-version concurrency
control variant [11, 77, 74, 111], while others use partitioned serial
execution to achieve high performance [72, 142, 143].

• Durability and recovery. Aries-style redo/undo logging and
recovery is rarely used. Instead, most systems opt for a form
of redo-only logging (or command logging) coupled with periodic
database snapshots to recover from a crash or restart [38, 74, 142].

• Query processing and compilation. To avoid the overhead
of virtual function calls, degradation of branch prediction, and
byte interpretation, several systems abandon the “get next”
iterator processing model. Instead, queries are compiled into
highly optimized machine code and run directly over in-memory
records [38, 47, 109].

4 Introduction

Figure 1.1: Microsoft Hekaton vs the traditional SQL Server engine taken from [38].
Latch contention plays a large part in limiting the scalability of the traditional
engine.

The list above resembles a set topics once thought to be picked over
and “closed” in the database research literature. However, over the past
several years there has been significant innovation in these and other
core areas with the reemergence of main-memory database systems,
making it a vibrant and exciting technology space.

The innovations made in main-memory databases come with mean-
ingful performance gains. Figure 1.1 provides an evaluation of the
thread-level scalability of the Microsoft Hekaton engine compared to
the traditional SQL Server engine running a typical customer work-
load2 . Hekaton achieves a roughly 15.7X performance improvement
at 12 cores, while the scalability of the traditional engine is limited
due to the overheads inherent in a disk-based architecture running a
memory-bound workload.

This article provides an overview of the research and develop-
ment of modern main-memory database systems. We focus our sur-

2Graph taken from the original paper [38]

5

vey mainly on transaction processing engines through the lens of four
main-memory systems: (1) H-Store/VoltDB [142, 143], a pioneering re-
search system from academic research groups at MIT, Brown, Brandeis,
and Yale that subsequently became a commercial database; (2) Heka-
ton [38], Microsoft SQL Server’s main-memory OLTP engine; (3) Hy-
PeR [72], a prominent research system from TU Munich that aims to
support both high performance OLTP and OLAP workloads in the
same engine; and (4) SAP HANA [137], the first main-memory opti-
mized engine to ship from a major database vendor. As we will see, each
of these systems are diverse in their design choices and form a represen-
tative sample of the state of the art in main-memory database systems.
Our coverage focuses on five issues that influence the architecture and
design of the system: (a) data storage and layout, (b) indexing and
data structure design, (c) concurrency control, (d) durability and re-
covery, and (e) query processing and compilation. We also summarize
the design of other modern commercial and academic main-memory
systems.

The organization of this survey is as follows. Chapter 2 summarizes
the past research and development of main-memory database systems
prior to the “modern era” (starting around 2007). Chapter 3 summarize
the issues used in our system survey. Chapter 4 provides case studies
describing the design of our four representative systems. Chapter 5
concludes this survey by summarizing interesting current and future
research trends in main-memory databases.

2
History and Trends

While this survey primarily focuses on modern main-memory database
system architecture and implementation techniques, research on main-
memory databases goes all the way back to the mid nineteen-eighties.
This section covers the history of main-memory database research. In
addition, there is a broader trend in main-memory systems that reaches
beyond databases. This section also highlights several areas of main-
memory optimizations outside of the database systems space.

2.1 History

While there is currently a flurry of activity in the main-memory
database space, there is actually a long history of research and de-
velopment of main-memory optimized systems going back to the mid-
eighties. This section summarizes this early work and compares an con-
trasts this early work with architectures adopted by today’s systems.

2.1.1 The Early Years (1984–1994)

Research papers on main-memory database technology started to ap-
pear in the early eighties. In general, much of this work looked at

6

2.1. History 7

improving performance of traditional relational database systems as-
suming most or all of the database fit in memory.

IMS Fast Path [50], released in 1976, is one of the first known sys-
tems to optimize for memory-resident data. Fast Path requires the user
designate a database as memory-resident. Optimizations included fine-
grained record-level locking and installing record updates at commit
time. Early work from the University of Wisconsin [37] explored opti-
mizing a relational database system when most or all of the relations fit
comfortably in main memory. This work explored a number of areas,
including access method performance, join techniques, and recovery
optimizations such as fast-commit, group-commit, and parallel log I/O
and checkpointing techniques.

The MM-DBMS project from the University of Wisconsin [80,
79, 81] performed seminal research in various areas of main-memory
databases. MM-DBMS explored use of pointers for direct record ac-
cess, new memory-optimized indexing methods (T-Trees), optimized
two-phase locking, and new recovery techniques. The IBM Starburst
memory-resident storage engine [82] was based on several of the opti-
mizations proposed in MM-DBMS (e.g., T-Trees, recovery techniques).
Follow-up work [52] explored lock and latching optimizations in Star-
burst that proposed a single latch to protect a table, all of its indexes,
and related lock information. This work also proposed direct addressing
of lock data to avoid indirection.

The MARS system [41, 58] partitioned the system into an in-
memory database processor (DP) and recovery processor (RP), where
RP lazily copied volatile updates to stable storage. Recovery work in
MARS showed the benefits of avoiding undo logging in a main-memory
system. System M [134, 135] was a prototype built to study recovery
techniques in a main-memory environment. It also explored a parti-
tioned technique that used message servers to process transactions and
log servers to persist updates.

TPK [90] explored transaction processing in a multi-processor
main-memory environments. TPK executed transactions serially and
employed a collection of specialized threads (input, output, execution,
and recovery) to process transactions.

8 History and Trends

Office-by-example (OBE) from IBM [21, 156] explored performance
and optimization of query processing for main-memory data in an inte-
grated office system. OBE explored several main-memory optimizations
for read-mostly data, including sorted inverted indexes that relied on
pointers for direct memory access.

PRISMA/DB [12, 13] explored two-phase locking and two phase
commit over a partitioned DBMS, where each node stored data in main
memory.

2.1.2 The New Millennium (1994–2007)

Main-memory database systems research in the mid-nineties onward
started to reflect the trends and architectures we see in today’s main-
memory systems. For instance, systems like ClustRa [66] explored a
distributed main-memory architecture, which is a design tenant fol-
lowed by VoltDB and several other research prototypes. Some of
the prototype systems built in this era matured into today’s high-
performance main-memory engines. For instance, P*Time is the main-
memory transaction processing engine in SAP HANA, while TimesTen
was acquired by Oracle.

Dalí was a main-memory database engine built by Bell Labs start-
ing in the early nineties [67, 23]. Dalí was later commercialized as
DataBlitz [16]. This system targeted high-performance multi-threaded
execution of OLTP workloads, servicing many of AT&T’s internal
high performance applications. Dalí allowed applications direct shared-
memory access to data records, a technique that allows for very fast
execution but is not a common in modern main-memory systems. Dat-
aBlitz/Dalí supported data replication for fast failover. It also reduced
I/O during recovery by performing redo-only logging (a transient undo
log is maintained in memory and discarded after commit). Redo-only
logging is a common practice in today’s main-memory systems. Dat-
aBlitz/Dalí also featured fuzzy action-consistent checkpointing that re-
duced lock contention on checkpointing worker.

Several distributed main-memory architectures started to appear in
the mid-to-late nineties. The ClustRa Database [66] was a distributed
main-memory system custom-built for telecom workloads. ClustRa was

2.1. History 9

built for high performance and availability and fully replicated database
state at each node. It used a 2-safe replication scheme with independent
failure modes.

System K from NYU [157] explored a programming language ap-
proach to high-performance in-memory transaction processing. This
system processed transactions sequentially at in-memory partitions as-
signed to a CPU core (it did not distribute across machines). System
K used logical logging, common in several of today’s main-memory
databases such as Hekaton and VoltDB, and also user-provided hints
for specifying types of transactions that conflict.

The TimesTen main-memory database [146, 147, 148] started as a
research project at HP Labs named “Smallbase” that was later spun off
into a separate company. Like other main-memory systems, TimesTen
implements a checkpointing and logging scheme that optimizes for
main-memory execution. One unique aspect of TimesTen is that it is
available as both a server as well a library that can be directly linked
by applications. TimesTen also supports fully ACID transactions, but
allows the user to relax the ACID properties for higher performance.
This flexibility allows the TimesTen engine to be used in other applica-
tion scenarios, such as mid-tier caching [148]. TimesTen was acquired
by Oracle, and now serves as Oracle’s high-performance main-memory
database solution.

P*Time [28] is a light-weight main-memory OLTP database built
for scalability on commodity machines. The system is optimized for
L2-cache consciousness. Several internal data structures in P*Time are
completely latch-free: a trend that is common in other modern main-
memory systems such as Hekaton. P*Time also optimizes for durability
and recovery by performing fine-grained parallel differential logging
and recovery. Concurrency control involves multi-level locking. While
P*Time started as a research prototype, it has become main-memory
OLTP engine inside the SAP HANA database.

10 History and Trends

2.2 Trends

Current research in the broader systems and storage space assumes
memory-resident data. While the focus of this survey is main-memory
databases, we highlight two related trends in main-memory storage.

Embedded Key-Value Stores

Main-memory key-value stores are engines that provide atomic opera-
tions (e.g., update, delete) on a single record. Non-distributed key-value
stores are usually available as a library that embeds in a larger applica-
tion or system to provide high-performance record storage and access.
The current trend in embedded key-value stores is to provide a high-
performance, memory-optimized data structure (hash or range-based
access) that enables fast data manipulation and retrieval. If persistence
is needed, the key-value store makes updates durable by writing to sec-
ondary storage (usually flash) or through replication.

Examples of memory-optimized key-value store designs include
Masstree [97], the Bw-tree [89], and MICA [92]. The Masstree is a
memory-optimized key value store that provides range queries and
scales well on modern symmetric multiprocessing machines. Masstree
employs a cache-conscious index layout using a “trie-of-B+-trees” and
implements an optimistic concurrency-control scheme that does not
block readers. The Bw-tree is a completely latch-free (lock-free) B+-
tree in memory. For durability, it implements a log-structured page
store that writes sequentially back to stable storage (e.g., Flash SSD).
The in-memory portion of the Bw-tree also serves as the range index in
Hekaton. MICA is a very high-performance key-value store that opti-
mizes the complete request-handling stack, from network request han-
dling at the network interface card, through to data structure design.
MICA uses a lossy hash index that scales well for concurrent thread
access performing both reads and writes.

Distributed Key-Value Stores

Scale-out distributed in-memory key-value storage is another trend
made possible by decreasing memory prices and price/performance im-

2.2. Trends 11

provements in commodity network infrastructure (e.g., RDMA). Per-
haps the most common use for a distributed key-value store in practice
is caching. Memcached [99] is one of the most widely used caching
systems. While generic in nature, in practice it is used as a front-end
cache for web applications. For instance, Facebook in 2009 reportedly
used upwards of 2,000 memcached servers to cache roughly 25% of its
data [117].

Recent projects have built distributed main-memory key-value
stores for primary data storage. Unlike a cache, these systems do
guarantee durability, all while maintaining high performance. RAM-
Cloud [116] was the first project to explore such an approach, aiming for
100x to 1,000x performance improvements over disk-based distributed
storage systems, along with 5µs-10µs latencies. RAMCloud organizes
a cluster of storage servers as a distributed, scale-out memory pool
for record storage. To achieve its performance goals, the RAMCloud
project made a number of advances in fundamental areas such as recov-
ery [114] and memory allocation [133]. FaRM [39] is another scale-out
distributed main-memory key-value store. FaRM has a lower-level in-
terface than RAMCloud, exposing memory from a cluster of machines
as a shared address space. Features of FaRM include lock-free reads
over RDMA as well as function shipping for running transactions lo-
cally on a single machine.

3
Issues and Architectural Choices

The architecture and implementation techniques in main-memory
database systems differ from those of traditional relational databases.
In this section, we cover a number of issues that allow main-memory
systems to achieve high performance. Each of these issues influences
architectural choices and ultimately determine the system design. For
each issue, we first summarize how it is addressed by traditional disk-
based systems. We then describe how main-memory environments differ
and summarize various design alternatives available to modern systems.
Later in Chapter 4, we detail how our representative systems address
the issues in practice.

3.1 Data Organization and Layout

This section covers the basic organization and layout issues in main-
memory database systems. As we will see, a primary design tenet is
to avoid page-based indirection as done in disk-based relational sys-
tems. In addition, we summarize a number of organizational decisions
made by modern main-memory systems such as partitioning, multi-
versioning, and row/columnar layout.

12

3.1. Data Organization and Layout 13

Frame1 Frame2 Frame3

Frame4 Frame5 Frame6

Frame7 Frame8 Frame9 Pages on disk
Buffer pool with page frames

Hash table

Figure 3.1: Buffer pool

3.1.1 Organization for Disk-Based Relational Systems

Traditional relational database systems were built under the assump-
tion that not all data fits into memory, which was indeed a precious
resource in the early days of relational systems. The “final resting place”
for data in these systems is disk. This means data must be paged into
memory (and back) as appropriate during processing.

Database pages are a fixed-sized block usually several Kilobytes in
size (e.g., 8KB or larger is typical) and have the same representation
both on disk and in memory to avoid translation overheads between
representations. Almost all data in the system maps to a page. For
instance, database records map to a specific offset and length on a
page, while index data structures like B+-trees use page-size nodes.

Paging data to and from disk is handled by the database storage
engine. In memory, pages are stored in a shared buffer pool as depicted
in Figure 3.1. The buffer pool is an array of page frames, where a frame
is the size of a database page. While implementation details differ, most
buffer pools use a hash table to map a page identifier to the page’s
physical location in the buffer pool, along with other information like
disk location and other metadata (see [63] for more details on buffer

14 Issues and Architectural Choices

pool implementation). When the storage engine receives a page request,
it first performs a lookup in the hash table to determine whether the
page resides in the buffer pool. If the page is not in memory, the storage
engine issues an I/O to bring the page from disk into the buffer pool.
It then returns a pointer to the in-memory page frame.

A buffer pool is an elegant and simple solution for paging that
abstracts disk away from other software components in the system
(e.g., the query processor). However, as we will see in the next sec-
tion, buffer pool indirection severely impacts the performance of main-
memory database systems.

3.1.2 Data Organization in Main-Memory Systems

The primary home for records in main-memory databases is RAM.
These systems are not constrained by the need to page data to and
from disk on demand during query processing. It is for this reason that
modern main-memory databases avoid page-based indirection through
a buffer pool. These systems do not use logical record identifiers of the
form (page id, offset) as done in traditional database systems. In-
stead, it is common practice for main-memory to use in-memory point-
ers for direct access to records.

Performance Benefits of Avoiding Page Indirection

Avoiding buffer pool indirection can improve performance of a database
engine by up to an order of magnitude. There are two main reasons for
such a large improvement: (1) avoiding indirection to resolve physical
record pointers and (2) page-level latch contention in the buffer pool.
We expand on both of these overheads below.

Avoiding page-based indirection. Accessing records through a
buffer pool leads to unnecessary overhead in a main-memory system. To
see why this is, notice from Figure 3.1 that an access to an in-memory
buffer pool page requires two layers of indirection to resolve a physi-
cal record pointer: (1) accessing the page in the buffer pool through
its directory hash table and (2) calculating a pointer to the record
memory using its offset within the page’s memory block. Avoiding such

3.1. Data Organization and Layout 15

indirection on every record access is a huge performance win. Experi-
mental evaluation from the Starburst main-memory engine project pro-
vided experimental evidence for such a speedup [82]. These experiments
showed up to an order of magnitude performance improvement when
using physical record pointers within the Starburst engine versus using
paged buffer-pool indirection.

Avoiding page latching. Avoiding buffer pool indirection removes
overhead associated with page-level latching. For example, accessing
pages through a buffer pool requires that the accessor set either a
shared page latch in the case of a read, or an exclusive page latch
in the case of an update. Manipulating these page-level latches can
become a bottleneck. For instance, an update will set a latch variable
to mark that it has exclusive access to manipulate page memory. Even
a reader using a shared latch will manipulate a latch variable such as a
reference count to denote the number of concurrent readers. Updates
to latch variables is done using an atomic CPU instruction, which can
lead to performance degradation especially on multi-socket machines1.
In a commercial system, it is not uncommon to have several latch types
based an accessor’s behavior. For example, Microsoft SQL Server has
six latch types [35], meaning a thread could acquire multiple latches
for a single page access.

An end-to-end example. To illustrate page indirection and
latch overhead, consider a secondary B+-tree traversal in a disk-based
system. This operation first requires traversing the secondary index
that requires four page lookups in the buffer pool, along with four
latch/unlatch operations, and four binary searches. If the secondary
index does not contain all the required columns, then a traversal of the
primary index may be necessary2, doubling the cost of the operation. In
addition, there may be additional overheads due to transactional lock-
ing (depending on the isolation level and concurrency control scheme).
Overall, this secondary index traversal is much more expensive when

1Commercial systems try to address this bottleneck using partitioned latches
(sometimes called superlatches), while useful, this approach does not avoid all con-
tention.

2This would be necessary in a system like SQL Server that store primary keys in
the secondary index.

16 Issues and Architectural Choices

compared to a main-memory system such as Hekaton that stores direct
pointers to records. In Hekaton, a secondary index lookup involves sim-
ply traversing the index to perform four index node searches, avoiding
buffer pool and latching overheads completely.

A Historical Overview

Some of the earliest research in main-memory databases from the Uni-
versity of Wisconsin looked at optimizing database operations assuming
the database fit comfortably in the buffer pool [37]. This work shed light
on a number of performance improvements for memory-resident data.
However, even when database pages are comfortably cached in memory,
record access still required buffer pool indirection as described above.
The MM-DBMS project from the University of Wisconsin [80, 79, 81],
and later the IBM Starburst variant [82], was one of the first to explore
the use of pointers for direct record access within the database engine.
From this point on, most main-memory systems avoided buffer pool
indirection as well. Systems like PRISMA/DB [12, 13], TimesTen (and
its research predecessor ‘Smallbase”) [146, 147, 148], and P*Time [28]
all used direct record pointers. One notable systems was Dalí from Bell
Labs that went to an extreme and allowed applications to have direct
shared-memory access to data records. While this technique leads to
very fast execution, it is not common in modern main-memory systems.

Organization Choices for Modern Main-Memory Systems

While direct pointer access to records is common amongst modern
main-memory systems, they differ in how records are organized in
memory. This section summarizes three primary organizational choices.
Later in chapter 4 we cover how each of our modern representative sys-
tems chooses to organize data.

Partitioning. One of the highest level differences between mod-
ern main-memory systems is whether they physically partition the
database. H-Store and VoltDB are examples of partitioned systems,
while Hekaton, HANA, MemSQL, and Oracle TimesTen are non-
partitioned systems.

3.1. Data Organization and Layout 17

The advantage of partitioning is that it greatly simplifies thread and
transaction-level concurrency issues. For example, partitioned systems
such as H-Store run transactions serially within a partition, thereby
avoiding transaction concurrency control protocols for single parti-
tion transactions. In addition, partitioned systems usually run single-
threaded within a partition, for instance, by assigning a partition to
single a CPU core. Single-threaded access means internal data struc-
tures such as indexes do not need to support multi-threaded updates,
which can greatly simplify the database kernel implementation.

The advantage of a non-partitioned approach is that any thread can
access and update any record in the database. These systems thus avoid
load-balancing issues that might arise due to “hot” partitions, which
usually requires workload re-assignment amongst threads and possi-
bly data movement (e.g., across NUMA sockets). Also, non-partitioned
systems do not need to coordinate transactions that span partitions,
since by default the system allows shared data access to all threads.
On the other hand, the complexity of the engine implementation in
non-partitioned systems is higher than that of partitioned systems; in
effect, non-partitioned systems trade engine implementation complex-
ity for partition management complexity.

Multi-versioning. A second important architectural choice is
whether the systems supports multi-versioning of data. While multi-
versioning is not a new concept in databases, it has received renewed
interest in the scope of main-memory systems. The primary reason is
that it enables concurrency control schemes where readers never block
writers. This non-blocking behavior leads to less context switch over-
head compared to a blocking-based protocols that cause threads to
sleep on conflict (e.g., within a lock manager). Since context switching
is a large overhead in main-memory systems, such protocols can lead to
profound performance improvements. We discuss concurrency control
details later in Section 3.3. For example, Hekaton, HyPer, and SAP
HANA implement record multi-versioning for this reason. Another use
of multi-versioning is to allow for snapshot reads into the past in order
to support, for instance, analytic queries on “near” real time data. Both
HyPer and SAP HANA support this type of functionality.

18 Issues and Architectural Choices

Row/Columnar layout. A third organizational choice is whether
to store the records in row or columnar format. The row vs column lay-
out tradeoffs have been well studied in the database literature [4], with
row-stores being used for update intensive OLTP workloads while col-
umn stores are more appropriate for analytics workloads. This rule of
thumb does not change much for main-memory systems. Since this sur-
vey is primary concerned with operational OLTP systems, the majority
of systems we cover opt for row layout to allow for efficient updates.
However, as we will see later in Chapter 4, there are notable excep-
tions. For example, SAP HANA supports an execution mode that al-
lows OLTP workloads to operate directly on data in the column store.
In this mode, HANA is willing to sacrifice some OLTP performance
(e.g., compared to a pure row-store) for the advantages of having the
primary database be stored in column format. HyPer supports a hy-
brid storage format that clusters frequently accessed columns. Hekaton
stores tables in row format but a column store index can be created on
a table to speed up analytical queries.

3.2 Indexing

Modern main-memory systems have brought about a renewed inter-
est in high-performance indexing methods. In this section we first
summarize index design in traditional database systems. We then ex-
plores two important topics when indexes fit entirely in main-memory:
(1) optimizing for CPU cache efficiency and (2) multi-core parallelism.
Throughout this section, we use B+-trees as an example of a typical
index, since all major commercial relational database systems support
them.

3.2.1 Indexing in Disk-Based Relational Systems

In a typical disk-based system, indexes map to pages managed by a
buffer pool. This allows indexes to be paged to and from disk similar
to pages that contain records. Figure 3.2 depicts the organization of
a B+-tree in a relational database. While specific node layout might
differ between systems (e.g., keys and other metadata), index nodes

3.2. Indexing 19

Figure 3.2: Typical B+-tree layout in disk-based RDBMS. Index nodes map to
pages managed by the buffer pool.

have the exact size of a page. This means that nodes might be under-
utilized (i.e., some of the page might be empty). Further, nodes must
split when a page becomes full.

Disk-based systems also typically support clustered indexes that
store records in the order defined by the index. Clustering ensures that
records remain in sorted order on disk, making operations like range
scans more efficient by reducing random disk seeks. Only one index
per table can be clustered, while the rest must be secondary indexes.
Commercial systems differ in how they implement secondary indexes.
For instance, Microsoft SQL Server stores the row’s primary key in its
leaf pages, requiring a second lookup in the primary index to retrieve
the full record. Oracle stores both the primary key and direct record
pointer in its leaf nodes, using the direct pointer as a “fast path” to
find a record, and using the primary key as a slow path in case the
record moves [63].

3.2.2 Indexing in Main-Memory Systems

In main-memory databases, index organization is somewhat different
from that used by disk-based system. First, there is no page-based
indirection as discussed in Section 3.1, therefore index nodes need not

20 Issues and Architectural Choices

r1 r2
r3 r4

r5 r6
r7 r8

Page 1 Page 2

(a) Clustered Index

r1
r2

r3

r4

…

Main Memory

(b) In-Memory Index

Figure 3.3: Differences in disk-based and in-memory index organization.

map to a database page. For example, the ART radix index used in
HyPer uses four separate size classes for its index nodes. Likewise,
the Bw-tree index used in Hekaton allocates exactly the node memory
needed to store its keys and payloads; it does not leave unused space
within the node. Furthermore, the Bw-tree uses a flexible split policy,
choosing to split B+-tree nodes when convenient, not when node sizes
reach a hard threshold as in disk-based indexes.

It is also common for main-memory indexes to store direct pointers
to records, rather than logical record ids or primary keys (in the case of
secondary indexes) as done in disk-based systems. Figure 3.3 provides
a visual example of this difference. Figure 3.3(a) depicts a disk-based
clustered index, where the index points to data (leaf) pages that store
records in sorted order. On the other hand, Figure 3.3(b) depicts the
main-memory approach that indexes records sitting in memory without
any particular clustering or organization.

Cache Awareness

Cache-aware indexing structures have been a topic of interest for quite
some time in both research and practice. The reason for this is the
chasm between CPU and memory speeds. Starting in the 1990s, CPU
speeds at the time were increasing 60% per year, while memory speeds
improved only 10% per year. Not surprisingly, cache miss stalls started

3.2. Indexing 21

Figure 3.4: Example of the CSB+-Tree (taken from [127].

to show up as a major bottleneck on memory-bound database work-
loads, with a significant portion of time spent servicing last-level cache
misses [8, 113]. There is still a large CPU/memory performance gap
today.

To address this bottleneck, indexing research focused on how to
optimize the use of a cache line, which is the “unit of transfer” in a
main-memory system. Techniques like the CSB+-Tree [127] (depicted
in Figure 3.4) used cache line-sized B+-tree nodes that removed as
many search pointers as possible in order to make space for keys. To
deal with removal of search pointers, the CSB+-tree used “node groups”
that packed several nodes together in the same memory block. The
parent node stores one or more pointers to child node groups (the
number of pointers/node groups is configurable), and the child nodes
are accessed by using an offset into the node group.

Cache line prefetching was also explored in the context of main-
memory indexing. The Pb+-Tree [30] explored prefetching of B+-tree
nodes in order to make searches and scans more efficient, as well as allow
node sizes larger than a cache line. At the time, this technique showed

22 Issues and Architectural Choices

a 1.5x speedup for B+-tree searches. Scan performance improved by
6x, however it required an additional structure that stored pointers to
future nodes in the scan.

Multi-core Parallelism

While cache-efficient indexing remains an important issue today, multi-
core scalability has become equally important. Today, main-memory
databases run on CPUs with a staggering amount of parallelism, with
each generation of processor increasing the core count even more. For
example, today, it is common to have 16 to 32 processor cores on a
server spanning multiple sockets, while high-end machines have up to
144 cores3. Attention to parallelism is especially important for OLTP
systems, since indexing is the hot path for updates and retrieval.

In general, there are two ways to achieve high concurrency in main-
memory indexing structures.

Partitioned. This approach partitions the indexing structure and
assigns a single thread to each partition. Each thread has exclusive
access to its partition. Since threads do not interfere with each other,
the index implementation remains relatively simple, since thread-level
concurrency is not an issue. Techniques like PLP [119] that use a multi-
rooted B+-tree (with partitions defined by each root) as well as H-Store
are representative of this approach. While the partitioned approach is
conceptually easy to implement, the drawback with the approach is
that skew in the workload may cause some partitions to become hot
spots, which limits the throughput of the system. Thus rebalancing is
required to remove the hot spots.

Shared. A shared approach allows any thread to read or update
any part of the index. The difficulty with a high-performance shared
approach is maintaining high concurrency and scalability of the in-
dex. The key to achieving high concurrency is to avoid (as much as
possible) critical sections that provide mutual exclusion by blocking
other threads. To address this issue there has recently been work on
“latch free” (lock-free) indexing structures that use atomic CPU prim-

3The Lenovo x3950 can be configured with 12TB of RAM and 144 cores.

3.3. Concurrency Control 23

itives (e.g., compare and swap, fetch and increment) to update index
state. The advantage of shared indexing methods is that they are self-
balancing: any thread can access any part of the index. The draw-
back is implementation complexity, especially for latch-free approaches
that cannot rely on critical sections. The Bw-tree used in Hekaton and
skiplists use by MemSQL are examples of highly concurrent latch-free
indexes used in practice. The Mass-Tree [97] is also representative of
state-of-the-art work in this area. We cover the details of these ap-
proaches in later chapters.

While there are several latch-free index implementations being used
in practice, recent research has started looking at the pros and cons of
latch-free synchronization. Failero and Abadi analyzed several latched
and latch-free synchronization techniques and performed microbench-
marks to experimentally verify the relative advantages of each [44].
They found the benefit of latch-free synchronization to be nuanced.
Latch-free techniques lead to high performance, but require careful
memory reclamation protocols. The study also found that one of the
most important factors to scalability on modern CPUs is avoidance
of contention on global memory locations, regardless of whether the
synchronization approach is latch-based or latch-free.

3.3 Concurrency Control

Concurrency control is a long-standing topic in database research, going
back to the early days of relational databases [55]. There have been a
number of books written on the subject [20, 57, 155] along with several
comprehensive surveys [18, 19]. Main-memory databases, however, have
caused a reexamination of the concurrency control landscape with the
goal of achieving high performance on modern hardware.

At a high level, there are two dimensions in the concurrency control
design space:

• Pessimistic vs. Optimistic: Pessimistic methods detect concur-
rency conflicts during transaction execution and either abort the
transaction (causing a restart) or block transaction execution un-
til the conflict clears. Optimistic methods allow a transaction to

24 Issues and Architectural Choices

execute without blocking. During commit, these methods require
a validation step to detect (and abort/rollback) transactions with
concurrency conflicts.

• Single-Version vs. Multi-Version: Single-version methods main-
tain only one version of a record. Records are updated in place,
and there is only one version available to readers at any point in
time. Thus, readers may block writers. Multi-versioned methods
create new record versions on every update and allow readers to
read old versions and thus avoid blocking writers.

A number of early studies explored the tradeoffs of different con-
currency control techniques. Many of these studies led to conflicting
results. For example, some comparisons suggested pessimistic blocking-
based approaches outperformed pessimistic approaches that restarted
transactions [7, 25], while other studies suggested the opposite [145]. In
other studies, optimistic concurrency schemes were shown to outper-
form pessimistic locking-based approaches [46], while the opposite was
found in other comparisons [7, 25]. One of the more comprehensive
comparisons done by Agrawal et al [6] clarified many of these con-
flicting results as a result of assumptions on computing resources, and
suggested that optimistic approaches perform very well when conflict
rates are low, but performance degrades (due to rollback and restart)
for higher conflict rates.

In general, many results of these early studies still hold, such as
the fundamental finding on the effect of contention on optimistic ap-
proaches. However, due to the increase in parallelism and the lack of
disk overhead in modern main-memory environments, many system
architectures have taken a fresh look at the concurrency control de-
sign space. In the rest of this section, we first review the two-phase
locking approach commonly used in disk-based systems. We then pro-
vide an overview of techniques used in main-memory systems. As we
will see, a common theme in modern systems is exploit parallelism by
using partitioned serial execution, or to use some form of optimistic
multi-versioning. However, other recent work shows that in some cases,
single-versioned pessimistic approaches also work well.

3.3. Concurrency Control 25

3.3.1 Concurrency Control in Disk-Based Systems

Commercial disk-based relational databases all use a form of two-phase
locking (2PL). 2PL is pessimistic, and requires all readers obtain a
shared read lock before reading a record, and an exclusive lock when
writing to a record. Locks can be taken on larger-granularity items
(e.g., a group of records on a page, or an entire table) to reduce the
overhead of acquiring individual locks on many records. If a transac-
tion cannot acquire a lock, it blocks until the lock is granted. As a
transaction executes, it acquires locks and holds them until the end of
the transaction (the first phase) and releases the locks all at once upon
termination (the second phase).

Most commercial disk-based systems also support multi-versioning
and to a lesser extent optimistic methods. Both are usually supported
as add-ons to 2PL [63]. For instance, SQL Server uses multi-versioning
to support snapshot isolation, though versions are temporary and not
recoverable. We focus solely on 2PL for the remainder of this section.

The lock manager in a relational engine is responsible for imple-
menting the 2PL protocol. When requesting a lock, the transaction
provides the lock manager with its transaction id, a resource id (a
unique identifier of the item to lock), and the lock mode it is request-
ing (see [57] for details). The lock manager either grants the request,
allowing the transaction to proceed, or blocks the transaction, restart-
ing it once the resource becomes available.4

While lock manager implementations differ by system, it is common
to use two main data structures to handle lock bookkeeping: (1) A
lock table is the structure for managing resources and detecting lock
conflict. It is usually implemented as a hash table keyed on resource id
with entries that hold lock metadata such as the mode and a wait queue
of blocked transactions. (2) A transaction table holds metadata about
transactions executing in the DBMS. The table stores information like
thread state (e.g., for resuming a transaction if it is blocked) and a
list of all locks held by a transaction so it can release all its locks
upon transaction termination. While we do not provide detail of 2PL

4Most lock managers also provide non-blocking requests to check if a lock is
available.

26 Issues and Architectural Choices

implementations (see [63] for more detail), the high-level idea is that all
major disk-based systems use a lock manager for concurrency control.

3.3.2 Concurrency Control in Main-Memory Systems

A common trend across main-memory databases is to avoid implement-
ing a separate lock manager. This is done for performance reasons. A
lock manager is a large monolithic software subsystem that acts as the
“traffic cop” for concurrency control. A transaction must take a round
trip through the lock manager’s lock table at least once before access-
ing a record. This indirection might be tolerable in a disk-based system
due to large overheads that are present elsewhere in the system (e.g.,
I/O). In a main-memory system, however, this indirection is a major
performance bottleneck. Thus, a major trend in main-memory systems
is to embed concurrency control metadata in the records themselves.
Chapter 4 will cover implementation details of several approaches in
practice. In the rest of this section we summarize the general design
space for concurrency control in main-memory systems.

Multi-versioning and Optimism. A common approach in sev-
eral commercial and research systems is to implement multi-version
concurrency control. Systems like Hekaton, HANA, and HyPer all use
some form of multi-versioning. One of the primary reasons to take this
approach is to unlock concurrency since readers never block writers.
While concurrency is an advantage, a disadvantage of multi-versioning
is overhead from (a) new version creation during an update and (b) the
need for some form of garbage collection to remove obsolete versions.

Within the multi-version design space, systems tend to skew toward
using optimistic approaches, but there are exceptions. Hekaton and Hy-
Per both use a form of optimistic multi-version concurrency control.
The advantage of using optimism is that it is much cheaper than tra-
ditional locking. It also scales to a high number of cores, since threads
simply execute unblocked until transaction completion, avoiding over-
heads like context switching present pessimistic lock-based approaches.
The fundamental disadvantage of optimism – as noted previously – is
that high contention may cause high abort rates, causing transactions
to roll back and restart several times [6]. SAP HANA opts for a pes-

3.3. Concurrency Control 27

simistic multi-versioned approach by using row-level write locks.
Partitioning. Systems that opt for partitioning assign a disjoint

piece of the database by core or machines if the database size is suf-
ficiently large. Within a partition, transactions execute serially. This
approach is simple: since transactions execute one after the other, nei-
ther locks nor validation are needed. This leads to very fast execution
within a single partition, and leads to great overall system performance
when transactions touch a single partition. However, when a transac-
tion spans multiple partitions, it must exclusively lock all partitions it
accesses for the duration of the transaction. This can lead to reduced
and unpredictable performance.

H-Store/VoltDB and Calvin [150] are examples systems that use the
partitioning approach. H-Store protects each partition with a single ex-
clusive lock. Before accessing a partition, a transaction must acquire
the partition lock. A transaction will abort if it discovers that it needs
to access another partition (e.g., due to a secondary index lookup)
and restarts once it has acquired all locks on the required partition(s).
Calvin is a system that can be layered on top of a partitioned non-
transactional storage system (main-memory or disk-based storage). It
implements a deterministic locking protocol that eliminates the over-
head typical in distributed commit protocols.

Apriori knowledge of write/read sets. If the system can de-
termine the read and write set of a transaction before execution (e.g.,
using static analysis) a number of optimizations can be made to the
concurrency control protocol. For example, the deterministic locking
protocol in Calvin relies on apriori knowledge of read and write sets
in order to determine a serialization order. In addition, a number of
pessimistic concurrency control techniques for main-memory systems
rely on apriori write set knowledge. Very lightweight logging [130] is a
lock-based approach that stores lock metadata (e.g., counts for exclu-
sive and shared locks) directly within records. A transaction requests
all of its locks before transaction execution begins, and starts execut-
ing only when all locks have been granted. In addition, BOHM [43] is a
pessimistic multi-version concurrency control protocol that determines
the serialization order of transactions prior to execution. BOHM then

28 Issues and Architectural Choices

creates a record placeholder in memory for the new version that the
transaction will write. This approach avoids using a centralized times-
tamp generator along with a validation phase common in optimistic
multi-versioned approaches.

3.4 Durability and Recovery

Durability and recovery techniques ensure a system can recover to a
consistent state after a crash. By far, the dominant crash-recovery ap-
proach used by disk-based systems is the ARIES [102] logging and
checkpointing protocol. In general, durability and recovery in main-
memory systems is still based on logging and checkpointing. How-
ever, when examining the details, the difference between disk-based
and main-memory systems is vast. Many main-memory systems avoid
using textbook ARIES-style protocols for performance reasons. In the
rest of this section, we briefly cover the ARIES-style approach used by
disk-based systems. We then highlight the most notable areas where
main-memory systems differ. Chapter 4 covers the details of what spe-
cific systems do in practice.

3.4.1 Durability and Recovery in Disk-Based Systems

Disk-based relational databases all use a form of the ARIES [102] pro-
tocol to ensure durability of committed transactions and to recover to a
consistent state. As we discussed previously, disk-based systems update
database pages in place within the buffer pool. The ARIES protocol
uses a write-ahead logging (WAL) scheme that writes each page modi-
fication to a sequential log before the page is written back to disk. Each
log record is given a log sequence number (LSN) that determines its
position in the log, and a log record cannot be flushed to disk until all
previous records with lower LSNs are also on disk. Before externally
acknowledging the success of a transaction to the user, a commit record
is written to the log and flushed, ensuring the effects of a transaction
will succeed even across failures.

Log records contain enough information to redo and undo the effects
of an update. A before image of the update byte sequence on a page

3.4. Durability and Recovery 29

(or logical description of how to undo the page update), is necessary to
roll back an update in case a transaction aborts. The redo information
is necessary to apply the update to a page during recovery.

For performance, databases try to keep log records as small as possi-
ble in order to increase I/O throughput to durable storage. There are a
variety of approaches to transaction logging in DBMSs [59, 62, 68, 96].
At one extreme, there is physical logging, where the DBMS records the
before and after image of an element in the database (e.g., a tuple,
block, or internal data structure for an index) being modified by the
transaction [59, 103].

Another approach is known as logical logging (sometimes called
event logging) where the DBMS only records the high-level operation
that the transaction executed (e.g., an update). Logical logging reduces
the amount of data that needs to be written to disk compared to physi-
cal logging, since it only needs to record what the operation was rather
than what it actually did to the database. But recovering the database
using logical logging will take longer because the DBMS will need to
re-execute each operation. It is common to use physical or physiological
logging (e.g., describing the logical operation on a particular page) to
support redo, and use logical logging to describe undo of an update.
Disk-based systems also log updates to index structures, such as B+-
tree or heap structure modifications. This allows for fast recovery of
the indexes during recovery.

To support fast recovery, relational databases periodically check-
point the database by asynchronously flushing pages in the buffer pool
back to disk. This allows for truncation of the write-ahead log, and
allows recovery to start at a point of history that reduces the amount
of redo (and undo) steps to bring the database back to a consistent
state. Details of recovery are outside of our scope (see ARIES [102]
for a complete and thorough discussion). However, for the purposes of
comparison, we note that disk-based systems typically use some flavor
of the ARIES protocol and checkpoint by writing pages back to disk.

30 Issues and Architectural Choices

3.4.2 Durability and Recovery in Main-Memory Systems

Logging in main-memory systems is optimized for high throughput
and low latency. Since log I/O is the major bottleneck, these systems
attempt to reduce log volume as much as possible, even more than
disk-based systems. Hekaton, for example, performs redo-only logging
by writing the newest record version for only transactions guaranteed to
commit [38]. This approach avoids writing undo information altogether.
H-Store/VoltDB uses a slimmed-down variant of logical logging called
command logging [96] that logs only the transaction invocation request.
The log record for this scheme consists solely of the stored procedure
name along with its input parameters and the transaction id.

To further minimizing log traffic, several systems also avoid logging
index data altogether. Only updates to base data are logged. After a
crash, indexes are built from scratch after recovery of the base records.
In addition, main-memory systems try to parallelize log I/O as much
as possible. For example, since Hekaton uses a multi-version concur-
rency control scheme, it can easily parallelize log traffic across several
I/O devices. This is also the approach taken in the Silo recovery pro-
totype [159]. For performance reasons, SSD is the log device of choice
for almost all systems.

Checkpointing is also different in main-memory systems. It is com-
mon for main-memory checkpoints to be larger than their counterparts
in disk-based systems; this is because main-memory systems usually
write all (or most) rows to storage. For example, the checkpointing
approach in Hekaton constantly scans the tail of the log and writes
new record versions to versioned checkpoint files. Deletes on the log
are written as deltas on top of existing checkpoint files to signify the
“tombstone” records in the file. Other lightweight main-memory check-
pointing techniques have been created, such as the CALC [129] non-
blocking asynchronous approach that goes into a temporary copy-on-
write mode, writing only record updates that have occurred since the
previous checkpoint. H-Store/VoltDB also uses a similar copy-on-write
scheme to take asynchronous snapshots of the data on each node.

The recovery process in main-memory systems differs from the typ-
ical ARIES-style “analysis, redo, undo” sequence used by disk-based

3.5. Query Processing and Compilation 31

systems. Most systems recover by loading the last valid checkpoint,
then replay the tail of the log, avoiding undo entirely. For example,
since Hekaton only logs redo information for updates from commit-
ted transactions, it recreates an initial database from its checkpoint
files. It then replays the relevant portion of the log before going online.
Likewise, H-Store/VoltDB recovers by loading the last full consistent
snapshot. It then replays transactions from its command log (starting
from the last snapshot time) to bring the database to a consistent state.

In a main-memory systems, the entire database must be loaded
into memory before going online; the database cannot partially exist
on storage like in a disk-based system. Therefore, recovery time is dom-
inated by the time to rebuild the database, along with indexes, using
the checkpoint and log. To make this as efficient as possible, several
systems attempt to parallelize recovery as much as possible. Hekaton,
for example, attempts to maximize I/O bandwidth during recovery by
using multiple log storage devices. Silo, which uses value logging, also
implements a highly parallel log replay scheme aimed at avoiding un-
necessary allocations and replay work.

3.5 Query Processing and Compilation

The query processing component of a database system encompasses
many tasks, from the “upper” layers that perform authorization, pars-
ing, and query optimization, to the “lower” layers that execute the
physical query plan. When comparing a main-memory system with a
disk-based system, the difference in the upper layer of a query processor
is not large: the implementation of parsing and query optimization re-
main similar. There is a vast difference in the lower layer of the query
processing stack. Main-memory systems reduce runtime overhead by
compiling queries directly to machine code. These queries execute di-
rectly against in-memory data. Disk-based systems, on the other hand,
execute queries using an iterator model and often use runtime inter-
pretation to perform operations like predicate evaluation.

This section summarizes the differences between disk-based and
main-memory systems in the lower layer of the query execution stack.

32 Issues and Architectural Choices

R S
heap scan

get-next

join

index scan

get-next

sort

get-next

get-next

group by

Figure 3.5: Query plan

We first cover how disk-based systems implement the iterator model.
We then discuss the query compilation and execution strategies in mod-
ern main-memory systems.

3.5.1 Query Execution in Disk-Based Systems

After query rewrite and optimization, the query processor is responsible
for executing a the physical query plan. The query plan is essentially
a data flow graph consisting of various query operators. Figure 3.5
provides an example query plan consisting of scan, join, sort, and group-
by operators.

Queries execute using an iterator model (also called Volcano-style
processing [54]). Each operator implements a generic interface, con-
sisting of the following basic functions (1) init that initializes the
operator, (2) get-next that instructs the operator to produce the next
tuple and return it to the caller, and (3) close that informs the oper-
ator to uninitialize. Each operator takes as input one or more iterators

3.5. Query Processing and Compilation 33

(depending on the semantics of the operation). While simple, this in-
terface is incredibly powerful as it allows for an arbitrary combination
of operators without special-purpose “glue” code.

A get-next call to the root operator of the query plan produces
a tuple satisfying the query. To produce this tuple, the root operator
makes a get-next call to its input operators, and so on down the
plan tree. This is often referred to as a pull-based operator model,
where tuples flow from the base operators to the root based on the
initial request from the root. See [53] for an extensive survey on query
processing and the iterator model.

Due to the generic nature of the iterator model, operator imple-
mentations are general-purpose. This means that the operator code
must be written to handle a large number of scenarios. One primary
example is handling data types: relational operators interpret the bytes
within a tuple at runtime, casting them to the appropriate data type
and performing runtime error checks as necessary. This avoids the need
to compile an operator for each possible combination of data type that
it might encounter.

3.5.2 Query Execution in Main-Memory Systems

While the iterator model served disk-based systems well, it comes from
an era where I/O was the dominant overhead. When used in a main-
memory database, the iterator approach introduces several inefficien-
cies. For example, the query invokes the get-next call for each tuple
produced in the query pipeline, meaning this function might be called
millions of times. On top of this, the get-next function is usually vir-
tual or called via a function pointer, meaning it is more expensive than
a vanilla function call and can degrade branch prediction on modern
CPUs. In addition, due to its generic nature, the iterator model often
leads to poor code locality. For example, while processing each tuple,
the operator must call another function to interpret the bytes within
the tuple. In more complex cases, e.g., a table scan on a compressed re-
lation, the operator must invoke code per-tuple for both book-keeping
and decompression.

Needless to say, this indirection and poor code locality adds up

34 Issues and Architectural Choices

to unnecessary overhead in a main-memory system. As we will see in
Chapter 4, modern main-memory databases avoid iterator-style pro-
cessing altogether. Instead, these systems aggressively compile queries
and transactions into machine code to avoid interpretation, avoid un-
necessary runtime overhead, and make efficient use of the CPU cache
hierarchy.

As we will see, each system differs slightly in how they compile
queries. HIQUE [73], one of the earlier compilation works in the modern
main-memory database era, proposed compiling a query into C using
code templates for each operator. HIQUE eliminates the iterator model
by inlining result materialization inside the operator execution. Heka-
ton compiles both queries and table definition data using the Microsoft
C compiler. Compiling table definitions allows data types to be known
at compile time and also allows inter-operation with the SQL Server
interpreted query executor. HyPer maximizes data locality by trying
to keep record attributes in CPU registers as long as possible. This is
done by compiling large pipeline fragments that end pipeline breakers:
materialization points that require tuples to spill from registers. Hy-
Per makes use of LLVM, where operators are partially implemented in
C++ while performance-sensitive and query-specific logic is generated.

We end this section by noting that query compilation is not a new
topic in database systems. In fact, the original System R prototype
compiled queries directly to machine code. However, as noted in [63],
when commercialized as SQL/DS, the System R query executor was
changed to use an interpreter. Since then, interpreted query execution
was the norm in disk-based database systems.

4
Systems

In this section, we take an in-depth look into four modern main-memory
database systems. Each system is distinct in its design and approach
to addressing the issues just discussed in Chapter 3. We begin in Sec-
tion 4.1 by describing Hekaton, Microsoft SQL Server’s main-memory
OLTP engine. We then cover H-Store and its commercial offshoot
VoltDB in Section 4.2. Section 4.3 describes the HyPer system from
TU-Munich, while Section 4.4 covers SAP HANA. Finally, we conclude
this Chapter by summarizing the design of other modern commercial
and academic main-memory systems in Section 4.5.

4.1 SQL Server Hekaton

4.1.1 Introduction

Hekaton is a database engine optimized for memory resident data inte-
grated into SQL Server. The official name of the feature is “In-Memory
OLTP" but it is more commonly called Hekaton. Exploration and pro-
totyping began in 2009 and the initial release was in SQL Server 2014.
Functionality was significantly expanded in SQL Server 2016 with, for
example, improved support for real-time analytics by the addition of

35

36 Systems

column store indexes also on Hekaton tables.
A Hekaton table, more precisely, a table managed by Hekaton, is

stored entirely in memory and can have several hash indexes and/or
range indexes plus at most one column store index. Tables are durable
and transactional, though non-durable tables are also supported. They
are accessed using T-SQL in the same way as disk-based tables. A
query can reference both Hekaton tables and disk-based tables and a
transaction can update both types of tables. A T-SQL stored proce-
dure that references only Hekaton tables can be compiled into native
machine code to further improve performance.

Hekaton is targeted primarily for OLTP applications and designed
for high levels of concurrency. Data is not partitioned - any thread can
access any row in a table. The engine uses latch-free data structures to
avoid physical interference among threads and a new optimistic, multi-
version concurrency control technique to reduce interference among
transactions.

A database can contain both in-memory tables and disk-based ta-
bles; only the most performance-critical tables need to be in main mem-
ory. This allows gradual adoption of the new technology, one table and
one stored procedure at a time.

Architectural Principles

The design of Hekaton was guided by three architectural principles, all
aimed at achieving low latency and high throughput on transactional
workloads.

• Optimize data structures for main memory. Hekaton ta-
bles and indexes live entirely in memory. Rows are immutable -
every updates creates a new version. This makes it possible to
use data structures, in particular, indexes that are optimized for
main memory. For example, a reference to a row in an index can
be a direct physical pointer. There is no need for a buffer pool so
the associated overhead and complexity is avoided entirely.

• Non-blocking execution. Achieving good scaling on multicore
systems is critical for high throughput. Scalability suffers when

4.1. SQL Server Hekaton 37

the systems has shared data structures that are updated at high
rate such as latches and spinlocks or highly contended resources
such as the lock manager. All Hekaton’s internal data structures,
for example, memory allocators, indexes, and the transaction
map, are entirely latch-free (lock-free). There are no latches or
spinlocks on any performance-critical paths in the system. Heka-
ton uses optimistic multi-version concurrency control so there are
no locks and no lock table. The result is in a system where threads
execute transactions without stalling or waiting.

• Compile requests to native code. To maximize run time per-
formance stored procedures that access only Hekaton tables can
be compiled into customized, highly efficient machine code.

4.1.2 Data Organization

A Hekaton table can have three types of indexes: hash indexes which
are implemented using lock-free hash tables, range indexes which are
implemented using Bw-trees [89], and at most one column store index.
Rows are accessed via index lookups, index range scans, column store
scans, or heap scans (physical scan of the memory areas storing a table).
Hekaton uses multi-versioning; an update always creates a new version.

Figure 4.1 shows a simple bank account table containing six row
versions. Ignore the numbers (100) and text in red for now. The table
has three (user defined) columns: Name, City and Amount. A version
includes a header and a number of link (pointer) fields. A version’s
valid time is defined by timestamps stored in the Begin and End fields
in the header.

The example table has two indexes, a hash index on Name and a
range index on City. Each index requires a link field in the row. The
first link field is reserved for the Name index and the second link field
for the City index. For illustration purposes we assume that the hash
function just picks the first letter of the name. Versions that hash to
the same bucket are linked together using the first link field. The leaf
nodes of the Bw-tree store keys and pointers to records. If multiple
rows have the same key value, the duplicates are linked together using

38 Systems

Figure 4.1: Record and index structures

the second link field and the Bw-tree points to the first row on the
chain.

Hash bucket J contains four records: three versions for John and one
version for Jane. Jane’s single version (Jane, Paris, 150) has a valid time
from 15 to infinity meaning that it was created by a transaction that
committed at time 15 and is still valid. John’s oldest version (John,
London, 100) was valid from time 10 to time 20 when it was updated.
The update created a new version (John, London, 110). We will discuss
John’s last version (John, London, 130) in a moment.

Reads

Every read operation specifies a logical (as-of) read time and only ver-
sions whose valid time overlaps the read time are visible to the read;
all other versions are ignored. Different versions of a row have non-
overlapping valid times so at most one version of a row is visible to a
read. A lookup for John with read time 15, for example, would trigger
a scan of bucket J that checks every version in the bucket but returns
only the one with Name equal to John and valid time 10 to 20.

4.1. SQL Server Hekaton 39

Updates

Bucket L contains two records that belong to Larry. Transaction 75 is in
the process of transferring $20 from Larry’s account to John’s account.
It has created the new versions for Larry (Larry, Rome, 150) and for
John (John, London, 130) and inserted them into the two indexes.

Note that transaction 75 has stored its transaction Id in the Begin
and End fields of the new and old versions, respectively. One bit in
the field indicates the field’s content type. A transaction Id stored in
the End field prevents other transactions from updating the same ver-
sion and it also identifies which transaction is updating the version. A
transaction Id stored in the Begin field informs readers that the version
may not yet be committed and identifies which transaction created the
version.

Now suppose transaction 75 commits with end timestamp 100. Af-
ter committing, transaction 75 returns to the old and new versions and
sets the Begin and End fields, respectively, to 100. The final values are
shown in red below the old and new versions. The old version (John,
London, 110) now has the valid time 20 to 100 and the new version
(John, London, 130) has a valid time from 100 to infinity. Larry’s record
is updated in the same way.

Multi-versioning improves scalability because readers no longer
block writers. Writers may still conflict with writers though. Read-only
transactions have little effect on update activity; they simply read older
versions of rows as needed. Multi-versioning also speeds up query pro-
cessing by reducing copying of rows. Since a version is never modified
it is safe to pass around a pointer to it instead of making a copy.

The system must discard obsolete versions that are no longer needed
to avoid filling up memory. A version can be discarded when it is no
longer visible to any active transactions. Cleaning out obsolete versions,
a.k.a. garbage collection, is handled cooperatively and continuously by
all worker threads [38].

4.1.3 Indexing

As previously mentioned, all data structures in the Hekaton engine
(including indexes) are completely latch-free. Hekaton currently uses

40 Systems

LPID Ptr

Page P
P

∆ D

CAS

(a) Delta updates

LPID Ptr

Page P

P

∆ ∆ ∆

Consolidated

Page P

CAS

(b) Page consolidation

Figure 4.2: Latch-free delta updates and consolidation.

statically-sized hash tables with overflow buckets implemented as latch-
free lists. Its range index is a latch-free B+-tree (the Bw-tree) [89]. The
key to latch-freedom in the Bw-tree is the use of a mapping table that
maps logical B+-tree page identifiers (PIDs) to physical page memory.
The mapping table is the central location for managing the “paginated"
tree. All links between Bw-tree pages are PIDs, not physical pointers.
The mapping table enables the physical location of a Bw-tree node
page to change on every update without requiring that the location
change propagate to the root of the tree, because inter-page links are
PIDs that do not change.

The Bw-tree performs page updates via copy-on-write, not via
update-in-place (updating the existing page memory). Avoiding
update-in-place reduces CPU cache invalidation, which is especially
important on multi-socket machines. Reducing cache misses also in-
creases the instructions executed per cycle. A delta record describes
the change of a single record on a page P (e.g., insert, update, delete).
This delta physically points to P. The update installs the (new) memory
address of the delta record into the P’s slot in the mapping table using
a compare-and-swap (CAS) instruction. If the CAS succeeds, the delta
record’s virtual memory address becomes the new physical “root" ad-
dress of the page, thus successfully updating the page. Delta updating
simultaneously enables latch-free access in the Bw-tree and preserves
processor data caches by avoiding update-in-place. Figure 4.2(a) de-
picts a delta update record D prepended to page P; the dashed line
represents P’s original address, while the solid line to D represents P’s
new address. We occasionally consolidate pages by creating a new page

4.1. SQL Server Hekaton 41

���������

��	
��

������

���������

���� �!"#$� %&"

'() *+,'-*.,/

012 3456789 6:5 ;6<7 =1> ?@A

BCDEFDGHIJE KLHF

MNOPQ RPSNTRUSV

Figure 4.3: Transaction state transitions

that applies all delta changes to a search optimized base page. This
reduces memory footprint and improves search performance. A consol-
idated form of the page is also installed with a CAS, as depicted in
Figure 4.2(b) showing the consolidation of page P with its deltas into
a new “Consolidated Page P”. B+-tree structure modifications (page
splits and deletes) are also performed in a latch-free manner.

4.1.4 Concurrency Control

Hekaton uses optimistic concurrency control to provide transaction iso-
lation; there are no locks and no lock table [77]. Pessimistic concurrency
control prevents conflicts by locking. Optimistic concurrency control
does not attempt to prevent conflicts but instead detects when a con-
flict has occurred by validating an update transaction’s reads before
commit. If validation fails the transaction aborts.

A transaction can be in one of four states: Active, Preparing, Com-
mitted, or Aborted. Figure 4.3 shows the possible transitions between
states. A transaction goes through three different phases during its
lifetime.

1. The transaction is created; it acquires a begin timestamp and sets
its state to Active.

2. Normal processing phase. The transaction does all its normal
processing during this phase. A transaction never blocks dur-
ing this phase. For update operations, the transaction copies its
transaction ID into the Begin field of the new versions and into
the End field of the old or deleted versions. If it aborts, it changes

42 Systems

its state to Aborted and skips directly to step 4. When the trans-
action has completed its normal processing and requests to com-
mit, it acquires an end timestamp and switches to the Preparing
state.

3. Preparation phase. During this phase the transaction performs
validation to determine whether it can commit or is forced to
abort. If it has to abort, it switches its state to Aborted and
continues to the next phase. If it is ready to commit, it writes all
its new versions and information about deleted versions to a redo
log record and waits for the log record to reach stable storage.
The transaction then switches its state to Committed.

4. Postprocessing phase. If the transaction has committed, it
proceeds to replace its transaction ID with its end timestamp
from the Begin field of the new versions and from the End field
of the old or deleted versions. If the transaction has aborted, it
marks all its new versions as garbage.

5. The transaction is now terminated. When the transaction’s old
versions are no longer visible to any active transaction, they as-
signed to the garbage collector, which is responsible for physically
deleting them.

Timestamps are drawn from a global, monotonically increasing counter.
A transaction gets a unique end timestamp by atomically reading and
incrementing the counter.

The extent of validation in the preparation phase depends on the
transaction’s isolation level. Read-only transactions, regardless of iso-
lation level, and update transactions running under snapshot isolation
require no validation at all. Write-write conflicts are detected immedi-
ately when a transaction attempts to update a version and result in
the transaction rolling back.

Transactions running under repeatable read or serializable isolation
require validation before commit. During validation a transaction T
checks whether the following two properties hold.

4.1. SQL Server Hekaton 43

• Read stability. If T read some version V1 during its processing,
we must ensure that V1 is still the version visible to T as of the
end of the transaction. This is implemented by validating that V1
has not been updated before T commits. Any update will have
modified V1’s end timestamp so all that is required is to check
V1’s end timestamp. To enable this, T retains a pointer to every
version that it has read.

• Phantom avoidance. For serializable transactions we must also
ensure that the transaction’s scans would not return additional
versions. This is implemented by re-scanning to check for new
versions before commit. To enable this, a serializable transaction
keeps tracks of all its index scans and retains enough information
to be able to repeat each scan.

4.1.5 Query Processing

In-memory tables are accessed using normal T-SQL either through na-
tively compiled stored procedures or through query interop. For max-
imum speed, stored procedures that access only in-memory tables are
compiled into customized, highly efficient machine code. The T-SQL
procedure is first converted into C code which is compiled by the Mi-
crosoft C compiler producing a DLL that is then loaded into the SQL
Server process. The generated code contains exactly what is needed
to execute the request, nothing more. As many decisions as possible
are made at compile time to reduce runtime overhead. For example,
all data types are known at compile time allowing the generation of
efficient code.

The classical SQL Server engine can access or update in-memory
tables through special operators built for this purpose. There is, for
example, an index scan operator for performing lookups or range scans
of an index on a Hekaton table. The caller specifies a search key or
key range and the operator outputs the qualifying rows with the re-
quested columns in the internal row format used by the classical en-
gine. This interoperation capability is crucial; it is used, for example,
for ad-hoc queries, for queries combining data from disk-based tables

44 Systems

and in-memory tables, and for queries requiring features not available
in natively compiled stored procedures.

4.1.6 Durability and Recovery

Transaction durability is ensured by logging and checkpointing rows
to external storage. Only user data, not indexes, are logged. During
recovery Hekaton tables and their indexes are rebuilt entirely from the
latest checkpoint and the tail of the log.

A transaction that successfully passes validation is ready to commit.
At this point it writes to the log all new versions that it has created and
keys of all versions it has deleted. This is done in a single write (except
for very large transactions) and if the write succeeds, the transaction is
irrevocably committed. Aborted transactions are not logged so aborting
a transaction is cheap.

Checkpointing

To reduce recovery time Hekaton also implements checkpointing. The
checkpointing scheme is designed to satisfy three key requirements.

• Continuous checkpointing. Checkpoint related I/O should oc-
cur incrementally and continuously as needed to avoid sudden I/O
spikes that negatively affect the transactional workload.

• Sequential I/O. Checkpointing should rely on sequential I/O
rather than random I/O for most of its operations. Even on SSD
devices random I/O is slower than sequential and can incur more
CPU overhead.

• Parallel recovery. Loading data into memory during recovery
should be highly parallelizable to fully exploit available I/O band-
width and minimize recovery time.

Checkpoint data is stored in two types of checkpoint files: data files
and delta files. A complete checkpoint consists of multiple pairs of data
and delta files. A data file contains all new versions created within a
specific timestamp range. Data files are append-only while open and

4.1. SQL Server Hekaton 45

once closed strictly read-only. At recovery time the versions in data
files are reloaded into memory and re-indexed, subject to filtering by
delta files.

A delta file stores information about which versions contained in
its associated data file have been subsequently deleted. Delta files are
also append-only. At recovery time, the delta file is used as a filter to
avoid reloading deleted versions into memory. The choice to pair one
delta file with each data file means that the smallest unit of work for
recovery is a data/delta file pair leading to a recovery process that is
highly parallelizable.

A complete checkpoint combined with the tail of the transaction log
enable Hekaton tables to be recovered. A checkpoint has a timestamp
which indicates that the effects of all transactions before the check-
point timestamp are included in the checkpoint and thus need not be
recovered from the transaction log.

A checkpoint task takes a section of the transaction log not covered
by a previous checkpoint and converts the log contents into one or
more data files and updates to delta files. New versions are appended
to either the most recent data file or into a new data file and the IDs
of deleted versions are appended to the delta files corresponding to the
data file where the original inserted versions are stored.

The set of files involved in a checkpoint grows with each checkpoint
but the active content of a data file degrades as more and more of
its versions are marked deleted in its delta file. Since crash recovery
reads the contents of all data and delta files in the checkpoint, recovery
performance degrades as the utility of each data file drops. The avoid
this problem temporally adjacent data files are merged when their ac-
tive content (the percentage of undeleted versions in a data file) drops
below a threshold. Merging two data files DF1 and DF2 results in a
new data file DF3 covering the combined range of DF1 and DF2. All
deleted versions are dropped during the merge so the new delta file is
empty immediately after the merge.

46 Systems

4.1.7 Performance and Further Reading

Performance Matters

Main memory databases can provide much higher throughput and lower
latency than traditional disk-based database systems. If the perfor-
mance improvements are sufficiently large this can make a real differ-
ence. The following example illustrates one such case.

EdgeNet provides optimized product data for suppliers, retailers,
and search engines. To optimize performance under a heavy workload,
the application would return product information from a cache instead
of querying production databases. Because the company received high
volumes of data from multiple sources, it was unable to write directly
to the production database without conflicting with read processes and
locking transactions. Instead, they received files into a staging environ-
ment, where the data was transformed and structured before loading
into the databases. It could take a day to prepare and load the infor-
mation so Edgenet looked for an alternative. They wanted an online
transaction processing (OLTP) solution that would provide their cus-
tomers with real-time access to information.

By switching to Hekaton, EdgeNet could allow read and write ac-
tivities to run concurrently on the same database, thereby enabling
continuous data ingestion. They no longer had to wait a day or even
an hour to stage and prepare data. Furthermore, they could also elimi-
nate the front-side caching layer and the staging area for data loading.
In summary, the substantial performance gained from switching to an
main-memory database enabled both much better customer service and
a simplified system configuration.

Further Reading

Reference [38] provides the most comprehensive overview of the design
of Hekaton, covering data storage and indexing, concurrency control,
query processing and compilation, and logging, checkpointing and re-
covery. A detailed description of Bw-trees used for range indexes is
provided in [89]. The concurrency control algorithms are described in
great detail in [77]. The compilation process is also covered in [47].

4.2. H-Store and VoltDB 47

4.2 H-Store and VoltDB

4.2.1 Introduction

H-Store (and its commercial successor VoltDB) is a DBMS that is de-
signed for efficient execution of modern OLTP workloads. Beyond using
main memory as the primary storage location of a database, its archi-
tecture is based on four design principles:

Partitioning and Serial Execution: Instead of allowing transac-
tions to execute concurrently, H-Store partitions data and exe-
cutes transactions serially at each partition [81, 90, 135, 157].
This means that it does not need to employ a heavy-weight con-
currency control scheme to manage fine-grained locks. When a
transaction executes, it never has to stall because all of the mem-
ory that it needs is already in main memory and it will never
block waiting to acquire a lock held by another transaction.

Stored Procedure Execution: Rather than sending SQL com-
mands at runtime, the application registers a set of SQL-based
procedures with H-Store and only invokes transactions through
these procedures. Encapsulating all transaction logic in a stored
procedure prevents application stalls mid-transaction and also
avoids the overhead of query planning at run-time. Although this
scheme requires all transactions to be known in advance, this
assumption is reasonable for OLTP applications [142, 96].

Distributed Deployments: In order to support databases that are
larger than the amount of memory available on a single node, the
H-Store will split databases across shared-nothing [140] compute
nodes into disjoint segments called partitions [36, 26]. Partitions
are replicated across multiple nodes to provide the transaction
processing system with high-availability and fault-tolerance.

Compact Logging: To avoid the overhead of a heavy-weight recov-
ery mechanism [102], H-Store uses a lightweight logical logging
scheme that only needs to record what transactions were rather
than the individual physical changes that it made to the database.

48 Systems

Fixed-Size Blocks
Tuple

Variable-Size Blocks

Header

Non-Inline Data

...

8-byte Pointers

Indexes

Block Look-up Table

1001
BlockId Location

1002 ######
1003 ######
1004 ######
1005 ######

Figure 4.4: An overview of the in-memory storage layer for H-Store.

Over the years, there have been several incarnations of the H-Store
system. The initial proof-of-concept was a single-node engine devel-
oped at MIT in 2007 that only could execute a simplified version of the
TPC-C benchmark [142]. The full-featured, general purpose version
of H-Store was developed in 2008 by Brown, MIT, Yale, and Vertica
Systems [70]. In 2009, this version of H-Store was forked and commer-
cialized as VoltDB [3]. In 2010, some of the changes from VoltDB were
merged back into the original H-Store source code, but the runtime
transaction management and coordination subsystems were rewritten.
Since then, H-Store’s development has continued in academia as re-
search test-bed while VoltDB continued on to develop features that
were important for real-world deployments.

H-Store’s architecture is divided into two parts: (1) the front-end
transaction management component and (2) the back-end query execu-
tor and storage manager. The front-end consists of all the networking
libraries for communicating with the application’s clients, the transac-
tion coordinator, and the stored procedures. This part of the system is
written in Java. The back-end C++ execution engine for each partition
contains the storage manager, indexes, and query plan executors.

4.2.2 Data Organization

The diagram in Figure 4.4 shows the storage layout for H-Store’s tables
and indexes. All of the execution engines at a single node operate in

4.2. H-Store and VoltDB 49

the same address space, but their underlying partitions do not share
any data structures. Each partition maintains separate indexes for the
database tables that only contain entries for the tuples associated with
that particular partition. This means that an execution engine is unable
to access data stored in another partition at the same node.

The in-memory storage area for tables is split into separate pools
for fixed-sized blocks and variable-length blocks. The fixed-size block
pool is the primary storage space for the tables’ tuples. All tuples are
a fixed size (per table) to ensure that they are byte-aligned. Any field
in a table that is larger than 8-bytes is stored separately in a variable-
length block. The 8-byte memory location of this block is stored in that
field’s location in the tuple [135]. All other fields that are less than 8-
bytes are stored in-line. Each tuple is prefixed with a 1-byte header
that contains meta-data on whether a tuple has been modified or has
been deleted by the current transaction. This information is used for
H-Store’s snapshot mechanism (Section 4.2.6).

The DBMS maintains a look-up table of the id numbers of blocks
to their corresponding memory location. This look-up table allows the
execution engine to reference individual tuples using a 4-byte offset in
the table’s storage area rather than an 8-byte pointer. That is, from a
4-byte offset the storage layer can compute the id of the block with the
tuple and the tuple’s location within that block.

The DBMS stores the tables’ tuples unsorted within the storage
blocks. For each table, the DBMS maintains a list of the 4-byte offsets
of unoccupied (i.e., free) tuples. When a transaction deletes a tuple, the
offset of the deleted tuple is added to this pool. When a transaction
inserts a tuple into a table, the DBMS first checks that table’s pool to
see if there is an available tuple. If the pool is empty, then the DBMS
allocates a new fixed-size block to store the tuple being inserted. The
additional tuple offsets that are not needed for this insert operation are
added to the table’s free tuple pool. H-Store does not compact blocks
if a large number of tuples are deleted from a table.1

Before a new application can be deployed on H-Store, the admin-
istrator has to provide the DBMS’s Project Compiler with (1) the

1Note that VoltDB supports automatic block compaction and reorganization

50 Systems

database’s schema, (2) the application’s stored procedures, and (3) the
database’s design specification. The compiler will generate a catalog
that contains the meta-data for the components in the application’s
database (e.g., tables, indexes, constraints) and the compiled query
plans for each of the application’s stored procedures.

Database Design

An application’s database design specification defines the physical con-
figuration of the database, such as whether to divide a particular table
into multiple partitions or to replicate it at every node. This determines
the partitions that each transaction will access at runtime. A design
determines whether the H-Store executes a transaction request from
the application as a fast, single-partition transaction, or as a slow, dis-
tributed transaction. That is, if tables are divided amongst the nodes
such that a transaction’s base partition has all of the data that the
transaction needs, then it is single-partitioned. Determining the opti-
mal configuration for an arbitrary application is non-trivial, especially
for a complex enterprise application with many dependencies. There
is a large amount of research on automatic database design that mini-
mizes distributed transactions and the amount of skew [33, 120].

Table Partitioning. A table can be horizontally divided into
multiple, disjoint fragments whose boundaries are based on the val-
ues of one (or more) of the table’s columns (i.e., the partitioning at-
tributes) [160]. The DBMS assigns each tuple to a particular fragment
based on the values of these attributes using either range partitioning or
hash partitioning. Related fragments from multiple tables are combined
together into a partition [51, 118]. Most tables in OLTP applications
will be partitioned in this manner. In the example database in Fig-
ure 4.5(a), each record in the CUSTOMER table has one or more ORDERS
records. Thus, if both tables are partitioned on their WAREHOUSE id (e.g.,
CUSTOMER.W_ID and ORDERS.W_ID), then all transactions that only ac-
cess data within a single warehouse will execute as single-partitioned,
regardless of the state of the database.

Table Replication. Instead of splitting a table into multiple par-
titions, the DBMS can replicate that table across all partitions. Table

4.2. H-Store and VoltDB 51

(a) Horizontal Partitioning (b) Table Replication

Figure 4.5: A database design for H-Store consists of the following: (a) splits tables
into horizontal partitions and (b) replicates tables on all partitions

replication is useful for read-only or read-mostly tables that are ac-
cessed together with other tables but do not share foreign key ances-
tors. This is different than replicating entire partitions for durability
and availability. For example, the read-only ITEM table in Figure 4.5(b)
does not have a foreign-key relationship with the CUSTOMER table. By
replicating this table, transactions do not need to retrieve data from a
remote partition in order to access it. But any transaction that modi-
fies a replicated table has to be executed as a distributed transaction
that locks all of the partitions in the cluster, since those changes must
be broadcast to every partition in the cluster. In addition to avoiding
additional distributed transactions, one must also consider the space
needed to replicate a table at each partition.

4.2.3 Indexing

H-Store supports hash table and B-tree data structures for unique and
non-unique indexes. The values of the entries in the indexes are offsets
for tuples. Since execution within a partition is single-threaded, the
index implementations do not need to be thread-safe. This leads to
simpler index implementations and shorter code paths.

52 Systems

Figure 4.6: Replication of secondary indexes on all partitions.

Secondary Index Replication

When a query accesses a table using a column that is not that table’s
partitioning attribute, it is broadcast to all partitions. This is because
the DBMS does not know what partition has the tuple(s) that the
query needs. In some cases, however, these queries can become single-
partitioned if the database includes a secondary index for a subset of
a table’s columns that is replicated across all partitions. Consider a
transaction for the database shown in Figure 4.6 that executes a query
to retrieve the id of a CUSTOMER using their last name. If each partition
contains a secondary index with the id and the last name columns, then
the DBMS can automatically rewrite the stored procedures’ query plans
to take advantage of this data structure, thereby making more trans-
actions single-partitioned. This technique only improves performance
if the columns chosen in these indexes are not frequently updated.

4.2.4 Concurrency Control

Instead of using a heavy-weight concurrency control scheme where mul-
tiple transactions execute simultaneously at a partition [17], H-Store
executes transactions one-at-a-time at each partition. That is, when a
transaction executes in H-Store, it has exclusive access to the data and
indexes at the partitions that it needs. Transactions never stall waiting

4.2. H-Store and VoltDB 53

to acquire a latch held by another transaction because no other trans-
action will be running at the same time at either its base partition or
its remote partitions.

H-Store uses timestamp-based scheduling for transactions [17].
When a transaction request arrives at a node, the coordinator assigns
the request a unique identifier based on its arrival timestamp. This id
is a composite key comprised of the current wall time at the node (in
milliseconds), a counter of the number of transactions that have arrived
since the last tick of the wall time clock (in case multiple transactions
enter the system at the exact same time), and the transaction’s base
partition id [149].

Each partition is protected by a single lock managed by its coordi-
nator that is granted to transactions one-at-a-time based on the order
of their transaction ids [5, 17, 32, 157]. A transaction acquires a par-
tition’s lock if (1) the transaction has the lowest id that is not greater
than the one for last transaction that was granted the lock and (2) it has
been at least 5 ms since the transaction first entered the system [142].
This wait time ensures that distributed transactions that send their
lock acquisition messages over the network to remote partitions are
not starved. We assume that the standard clock-skew algorithms are
used to keep the various CPU clocks synchronized at each node.

Serializing transactions at each partition in this manner has several
advantages for OLTP workloads. In these applications, most transac-
tions only access a single entity in the database at a time (e.g., a trans-
action that operates on a single customer). That means that if the
DBMS will perform significantly faster than a traditional DBMS if the
database is partitioned in such a way that most transactions only to
access a single partition. Smallbase was an early proponent of this ap-
proach [65], and more recent examples include K [157] and Granola [32].
The downside of this approach, however, is that it means transactions
that need to access data at two or more partitions are significantly
slower. If a transaction attempts to access data at a partition that it
does not have the lock for, then the DBMS aborts that transaction
(releasing all of the locks that it holds), reverts any changes, and then
restarts it once the transaction re-acquires all of the locks that it needs

54 Systems

again. Employing such an approach removes the need for distributed
deadlock detection, resulting in better throughput for short-lived trans-
actions in OLTP applications [60].

The coordinator queues the request at that all of the nodes that con-
tain the partitions that the transaction will access. When the transac-
tion acquires a partition’s lock, the coordinator prepares an acknowl-
edgement message to send back to the transaction’s base partition.
Once the transaction acquires all the locks that it needs from a node’s
partitions, the coordinator sends this acknowledgement. Once a trans-
action receives all of the lock acknowledgements for the partitions that
it needs, the coordinator for its base partition schedules the transaction
to run immediately on its base partition’s execution engine [18, 24].

4.2.5 Query Processing

Every partition in H-Store is managed by a single-threaded execution
engine that has exclusive access to the data at that partition. An ex-
ecution engine is comprised of two parts, one written in Java and one
written in C++. In the Java-level component, the execution engine’s
thread blocks on a queue waiting for messages to perform work on be-
half of transactions. This work can either instruct the engine to invoke
a procedure’s control code to start a new transaction or to execute
a query plan fragment on behalf of a transaction running at another
partition. Note that for the latter, H-Store’s transaction coordination
framework ensures that no transaction is allowed to queue a query re-
quest at an execution engine unless the transaction holds the lock for
that engine’s partition.

The execution engine’s C++ library is where H-Store stores
databases and processes queries. The Java layer uses the Java Native
Interface (JNI) framework to invoke the methods in the C++ library
and passes it the query plan identifiers that the transaction invoked.
This library is not aware of other partitions or nodes in the cluster; it
only operates on the input that it is provided.

4.2. H-Store and VoltDB 55

PRE-DEFINED SQL STATEMENTS
QueryX = "SELECT * FROM X WHERE X_ID=? AND VAL=?"
QueryY = "SELECT * FROM Y WHERE Y_ID=?"
QueryZ = "UPDATE Z SET VAL=? WHERE Z_ID=?"

TRANSACTION CONTROL CODE
run(x_id, y_id, value):
 result = executeSQL(QueryX, x_id, value)
 if result == null: abort()
 result = executeSQL(QueryY, y_id)
 # ADDITIONAL PROCESSING...
 executeSQL(QueryZ, result, x_id)
 return

1

2 3

4

Figure 4.7: A stored procedure defines (1) a set of parameterized queries and (2)
control code. For each new transaction request, the DBMS invokes the procedure’s
run method and passes in (3) the procedure input parameters sent by the client.
The transaction invokes queries by passing their unique handle to the DBMS along
with the values of its (4) query input parameters.

Stored Procedures

Each stored procedure is identified by a unique name and consists of
user-written Java control code (i.e., application logic) that invokes pre-
defined parameterized SQL commands. The application initiates trans-
actions by sending a request to the DBMS that contains the procedure
name and input parameters to the cluster. The input parameters to
these stored procedures can be either scalar or array primitive values.

As shown in the example in Figure 4.7, a stored procedure has a
“run” method that contains the application logic for that procedure.
There are no explicit begin or commit commands for transactions in
H-Store. A transaction begins when the execution engine of its base
partition invokes this method and then completes when this method
returns (either through the return or abort commands). When this
control code executes, it makes query invocation requests at runtime
by passing the target query’s handle along with the input parameters
for that invocation to the H-Store runtime API (e.g., queueSQL). The
values of these input parameters will be substituted for the query’s
parameter placeholders (denoted by the “?” in the SQL statements in
Figure 4.7). The DBMS queues each invocation and then immediately

56 Systems

returns back to the control code. Multiple invocations of the same query
are treated as separately even if they use the same input parameters.

After adding all of the invocation requests that it needs to the cur-
rent batch, the control code then instructs the DBMS to dispatch the
batch for execution (e.g., executeBatch). At which point, the control
code is blocked until the DBMS finishes executing all of the queries in
the current batch or aborts the transaction due to an error (e.g., if one
of the queries violates a integrity constraint). This command returns
an ordered list of the output results for each query invocation in the
last batch executed.

H-Store includes special “system” stored procedures that are built
into the DBMS. These procedures allow users to execute administrative
functions in the system, such as bulk loading data into tables, modifying
configuration parameters, and shutting down the cluster.

Although stored procedures in H-Store contain arbitrary user-
written Java code, we require that all of their actions and side-effects
are deterministic. That is, each stored procedure must be written such
that if the DBMS executes a transaction again with the same input
parameters and in the same order (relative to other transactions), then
the state of the database after that transaction completes will be the
same. This means that the procedure’s control code is not allowed to ex-
ecute operations that may give a different result if it is executed again.
This requirement is necessary for H-Store recovery (Section 4.2.6).

The types of non-deterministic operations that are forbidden in a
stored procedure’s control code include (1) using an RPC library inside
of a procedure to communicate with an outside system, (2) retrieving
the current time from the node’s system clock, or (3) using a random
number generator. As an example of why these are problematic, con-
sider a procedure that contacts an outside third-party fraud detection
system to determine whether a financial transfer is fraudulent during
the transaction. The transaction will then choose whether to commit
or abort based on the response from this system. One problem with
doing this in an H-Store transaction is that this service may report a
false positive if the same request is sent to it multiple times by dif-
ferent invocations of the same transaction running on different nodes

4.2. H-Store and VoltDB 57

(i.e., replicated deployments). Additionally, the service may be unavail-
able at a later date when the DBMS replays the transaction (i.e., crash
recovery). In either case, the database will be inconsistent. Thus, in or-
der for this application to work reliably in H-Store, the developer would
need to move the fraud detection operation outside of the procedure.

Stored Procedure Routing

In addition to partitioning or replicating tables, a database design can
also ensure that each transaction request is routed to the partition that
has the data that it will need (i.e., its base partition) [126]. H-Store
uses a procedure’s routing attribute(s) defined in a design at runtime to
redirect a new transaction request to a node that will execute it [112].
The best routing attribute for each procedure enables the DBMS to
identify which node has the most (if not all) of the data that each
transaction needs, as this allows them to potentially execute with re-
duced concurrency control [120]. Figure 4.8 shows how transactions are
routed according to the value of the input parameter that corresponds
to the partitioning attribute for the CUSTOMER table. If the transac-
tion executes on one node but the data it needs is elsewhere, then it
must execute with full concurrency control. This is difficult for many
applications, because it requires mapping the procedures’ input param-
eters to their queries’ input parameters using either a workload-based
approximation or static code analysis.

4.2.6 Durability and Recovery

Since H-Store is a main memory DBMS, it must ensure that all of a
transaction’s modifications are durable and are recoverable if a node
crashes. The key, however, is to provide this guarantee without sig-
nificantly hindering the performance advantages of the system. Since
H-Store is designed to run on commodity hardware, we cannot assume
that the DBMS will be deployed using special-purpose components
(e.g., battery-backed up memory) [49].

Given this, H-Store uses a lightweight, logical logging scheme
that has less overhead than existing approaches for disk-oriented sys-

58 Systems

Figure 4.8: Routing of transaction stored procedure to the best base partition.

tems [102]. It will also take periodic checkpoints of the database to
reduce the recovery time of the system after a crash. An overview of
this process is depicted in Figure 4.9. We now discuss these two mech-
anisms. We then discuss in Section 4.2.6 how H-Store restores the state
of the database from these logs and checkpoints.

Command Logging

As discussed in Section 3.4, there are several techniques for logging,
ranging from physical to logical. H-Store uses a variant of logical log-
ging, known as command logging, where the DBMS only records the
transaction invocation requests to the log [96]. Each log record con-
tains the name of the stored procedure and the input parameters sent
from the application, and the transaction’s id. Because one log record
represents the entire invocation of the transaction, command logging
does not support transaction save points [103]. This is not a significant
limitation because OLTP transactions are short-lived.

H-Store writes out the log records using a separate thread; the
execution engines are never blocked by the logging operations. The
DBMS writes the entries after the transaction has executed but be-
fore it returns the result back to the application. This is different than
write-ahead logging [59], where the DBMS logs the transaction request
before it executes. This has two advantages. The first is that the DBMS

4.2. H-Store and VoltDB 59

...

Command Log

Stored
Procedures

Query
Executor

Snapshots

Partition 1 Partition 2 Partition 3

Partition 1 Partition 2 Partition 3

...

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

TxnId ProcedureName Parameters

SNAPSHOT #1002

#1002

#1001

Figure 4.9: An overview of H-Store’s logging and checkpoint scheme.

does not need to write out entries for transactions that abort, since the
system ensures that all of the changes made by an aborted transac-
tion are rolled back first before executing the next transaction. Thus,
an aborted transaction’s affect on the database’s state is the same as
if it was never executed at all. Second, because H-Store can restart
transactions due to internal control mechanisms, a transaction may be
assigned multiple transaction identifiers. For example, when a trans-
action attempts to access a partition that it does not have the lock
for, the DBMS will restart that transaction, rollback any changes that
it made, assign it a new transaction identifier, and then resubmit the
lock acquisition requests at the partitions that it needs. If the DBMS
logged the transaction’s command prior to execution, it would need to
write a new entry every time a transaction restarted that marked the
previous entry as voided.

The DBMS combines command log entries together for multiple
transactions and writes them in a batch to amortize the cost of writing
to disk [36, 61, 157]. Modifications made by transactions are not visible
to the application until their log record has been flushed. Similarly, a

60 Systems

transaction cannot be released to the application until all transactions
that executed before it have been written to the command log.

Snapshots

As the DBMS executes transactions and writes their commands out
to the log, the DBMS also creates non-blocking snapshots of the
database’s tables [90, 142]. The snapshot for each partition is writ-
ten to the local disk at their host node. When the system needs to
recover the database after a crash, it loads in the last checkpoint that
was created and then replays only the transactions that appear in the
command log after this checkpoint [96]. This greatly reduces the time
needed to recover the database. H-Store’s snapshots only contain the
tuples in the tables and not the indexes.

The DBMS can be configured to take checkpoints periodically or
manually using a system stored procedure. The system also maintains
a catalog of the snapshots that it has taken that is retrievable by the
application through another system procedure.

When H-Store starts a new checkpoint, one node in the DBMS is
elected as the coordinating node for the next checkpoint. This node is
either selected at random (if it for is a scheduled checkpoint initiated by
the DBMS) or the node with the transaction’s base partition (if it was
initiated through a system procedure). The DBMS at this node sends a
special transaction request to every partition in the cluster to instruct
them to begin the checkpoint process. This request locks all of the par-
titions to ensure that each node starts writing the checkpoint from a
transactionally consistent database state [122]. This system procedure
causes each execution engine at all of the partitions to switch into a spe-
cial “copy-on-write” mode. Any changes made by future transactions
do not overwrite the tuples that existed when the current checkpoint
started and any new tuples that were inserted after the checkpoint was
started are not included in the snapshot data. Once all of the par-
titions send back acknowledgements, the DBMS commits the special
transaction and each partition starts writing out the snapshot to disk
in a separate thread. The execution engines then return to processing
transactions while the snapshot processing occurs in the background.

4.2. H-Store and VoltDB 61

The amount of time that it takes the execution engine at a partition
to complete the database snapshot out to disk depends on the size of the
database and the write speed of the storage device. After a partition’s
engine finishes writing the snapshot, it disables the “copy-on-write”
mode and sends a notification message back to the coordinating node.
Once the coordinating node has notifications from every partition, it
sends a final finish message to each partition that instructs them to
clean up transient data structures and marks the snapshot as complete.

Crash Recovery

The process for restoring a database from the command log and snap-
shot is straightforward [96]. First, when the H-Store node starts, each
execution engine at the node reads in contents from the last snapshot
taken at its partition. For each tuple in a snapshot, the DBMS has to
determine what partition should store that tuple, since it may not be
the same one that is reading in that snapshot. This situation can occur
if the administrator changes number of partitions in the cluster when
the system was brought off-line. As the engines load in each row, it will
also rebuild the tables’ indexes at its partitions.

Once the snapshot has been loaded into memory from the file on
disk, the DBMS will then replay the command log to restore the
database to state that it was in before the crash. A separate thread
scans the log backwards to find the record that corresponds to the
transaction that initiated the snapshot that was just loaded in. It then
scans the log in the forward direction from this point and re-submits
each entry as a new transaction request at that node. The transaction
coordinator ensures that these transactions are executed in the exact
order that they arrived in the system; this differs from the normal ex-
ecution policy where transactions are allowed to get re-ordered and
re-executed.

The state of the database after this recovery process is guaranteed
to be correct, even if the number of partitions during replay is dif-
ferent from the number of partitions at runtime. This is because (1)
transactions are logged and replayed in serial order, so the re-execution
occurs in exactly the same order as in the initial execution, and (2) re-

62 Systems

play begins from a transactionally-consistent snapshot that does not
contain any uncommitted data, so no rollback is necessary at recovery
time [59, 122, 96].

4.3 HyPer

4.3.1 Introduction

The in-memory database system HyPer was developed at the Techni-
cal University of Munich to accommodate hybrid OLTP&OLAP work-
loads on the same database state with full ACID guarantees. This al-
lows OLAP data exploration on the most recent transactional database
state; thereby enabling the often cited “real time analytics”. Tradition-
ally, the two workloads, OLTP and OLAP, were separated in two ded-
icated systems: The transactional database with a normalized schema
and the data warehouse for read-mostly analytical query processing.
The necessary ETL process incurs the problems of complexity and
staleness of the data warehouse because of the time delay until data is
refreshed.

The advent of ever more powerful database servers, even in the form
of commodity servers with many dozens of cores and several Terabytes
of main memory capacity has finally paved the way to consolidate these
two heterogeneous workloads in a single system instance.

4.3.2 Data Organization

Isolating OLTP-Transactions and OLAP-Queries by Snapshotting

In order to accommodate both OLTP and OLAP workloads simultane-
ously on the same database state, it is necessary to effectively isolate
these two tasks from each other. One possible approach would be some
kind of update staging that separates data between the main database
system that contains older, mostly immutable data objects and the
delta store that contains most recently inserted and updated data ob-
jects. Periodically the delta store is merged into the main store. The
disadvantage of the update staging approach of incurring extra reorga-
nization effort for merging the delta with the main database system led

4.3. HyPer 63

c

OLTP Transactions

Virtual memory management
fo

rka

b

d

c

OLAP Queries

 Read a

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Read a

Page Table

Page Table

c

OLTP Transactions

Virtual memory management C
op

y
on

w
rit

e
a’

b

d

c

OLAP Queries
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
 Update aàa’

 Read a

a

b

Page Table

Page Table

Figure 4.10: Snapshotting via virtual memory copy-on-write mechanism

us in the design of an alternative architecture in which the transactional
database is entirely maintained in a coherent state.

HyPer exploits the operating systems functionality to create virtual
memory snapshots for new, duplicated processes. In Unix, for example,
this is done by creating a child process of the OLTP process via the
fork() system call. To guarantee transactional consistency, the fork()
should only be executed in between two (serial) transactions, never
in the middle of one transaction. This constraint can be relaxed by
utilizing the undo log to convert an action consistent snapshot (created
in the middle of a transaction) into a transaction consistent one.

The forked child process obtains an exact copy of the parent pro-
cesses address space, as exemplified on the left of Figure 4.10 by the
overlayed page frame panel. This virtual memory snapshot that is cre-
ated by the fork()-operation will be used for executing a session of
OLAP queries – as indicated on the right hand side of Figure 4.10.

The snapshot stays in precisely the state that existed at the time
the fork() took place. Fortunately, state-of-the-art operating systems
do not physically copy the memory segments right away. Rather, they
employ a lazy copy-on-write/update strategy – as sketched out on the
right in Figure 4.10. Initially, parent process (OLTP) and child pro-
cess (OLAP) share the same physical memory segments by translating

64 Systems

either virtual addresses (e.g., to object a) to the same physical main
memory location. The sharing of the memory segments is highlighted
in the graphics by the dotted frames. A dotted frame represents a vir-
tual memory page that was not (yet) replicated. Only when an object,
like data item a, is updated, the OS- and hardware-supported copy-on-
update mechanism initiate the replication of the virtual memory page
on which a resides. Thereafter, there is a new state denoted a′ accessible
by the OLTP-process that executes the transactions and the old state
denoted a, that is accessible by the OLAP query session. Unlike the fig-
ure suggests, the additional page is really created for the OLTP process
that initiated the page change and the OLAP snapshot refers to the old
page – this detail is important for estimating the space consumption
if several such snapshots are created. This snapshotting mechanism
completely separates OLTP transaction processing from OLAP query
evaluation by means of the operating system in combination with the
memory management unit (MMU).

Hybrid Storage Structures

As highlighted in Chapter 3, HyPer avoids database-specific buffer
management and page structuring. The data resides in simple main-
memory optimized data structures within the virtual memory. Thus,
HyPer exploits the OS/CPU-implemented address translation at “full
speed” without any additional indirection. Even though the virtual
memory can (significantly) outgrow the physical main memory we limit
the database to the size of the physical main memory in order to avoid
OS-controlled swapping of virtual memory pages.

For organizing relations in the virtual memory there are two well
known extremes at the borders of the design space: In the row store
approach relations are maintained as arrays of entire records and in the
column store approach the relations are vertically partitioned into vec-
tors of attribute values. HyPer can be configured to operate as a column
or a row store – but the table layout can also be adjusted according to
the access patterns. In the hybrid storage format, it is possible to clus-
ter those attributes that are frequently accessed together into a single
vector constituting a non-redundant vertical fragmentation.

4.3. HyPer 65

Assume that the following query occurs frequently:

select oDate, sum(oPrice)
from Orders
where oDate >= 20130101
group by oDate

Then clustering the two attributes, oDate and oPrice into the same
vector would be beneficial. Below we show such a storage layout (for
simplicity the example uses C++/STL for vector collections, though
HyPer makes use of its own data structures):

/// An Order
struct Order { unsigned id; unsigned customer; unsigned product;

unsigned oDate; double oPrice; };
struct OrderDatePrice { unsigned oDate; double oPrice; };
/// All Orders in hybrid format
struct Orders {
vector<unsigned> data_id;
vector<unsigned> data_customer;
vector<unsigned> data_product;
vector<OrderDatePrice> data_oDate_oPrice;

void insert(Order&& order);
};

Code Generation for Queries. The above shown example query
could then be translated into the following C++ code, which relies on
a scan of the one clustered vector data_oDate_oPrice:

unordered_map<unsigned, double> revenueByDate(Orders& orders)
{

unordered_map<unsigned, double> groupBy;
for (OrderDatePrice date_price : orders.data_oDate_oPrice) {

if (date_price.oDate >= 20130101) {
groupBy[date_price.oDate] += date_price.oPrice;

}
}
return groupBy;

}

66 Systems

This program fragment simplifies many aspects of the HyPer query
engine; nevertheless it is meant to demonstrate that translating declar-
ative SQL queries can indeed result in executable code that is as fast
as (or due to multi-core parallelization even much faster than) hand-
written code.

The actual HyPer engine deviates from this simple code generation
in some major ways:

1. HyPer employs a full-fledged advanced query optimizer for op-
timizing the join order, unnesting nested subqueries, predicate
pushdown, etc.

2. HyPer compiles SQL queries and transactional programs written
in HyPerScript into LLVM assembler code. The foremost advan-
tage is the elimination of the C++ compiler which takes seconds
and thus impedes interactive query processing.

3. HyPer automatically parallelizes the query execution to make
best use of a multi-core server that, nowadays, has dozens or
hundreds of cores.

4. HyPer employs sophisticated data structures and algorithms that
are particularly cache-conscious and incur low synchronization
overhead for thread-level parallelization.

Dynamic Storage Allocation. HyPer initially assumes that a rela-
tion remains small and allocates only a fixed (small) vector – in order
to avoid the bookkeeping overhead for dynamically allocated storage.
However, once a relation grows beyond a certain threshold dynamically
growing partition vectors that are addressed via a direct mapping table
DM, as shown in Figure 4.11, are used in HyPer. All data vectors of one
horizontal fragment are stored contiguously. If a pure columnar format
is used, all attribute vectors are concatenated. In our example, we chose
one clustered data vector which happens to be stored at the end of the
fragment. Each time a fragment overflows, a new fragment is allocated
such that the overall number of (possible) rows doubles. Therefore, the
first two fragments in the figure have space for two rows, the next one

4.3. HyPer 67

/

/

/

/

/

/

/

/

/

/

/

...

Id

Customer

Product

oDate & oPrice

007

007.Product

DM

Figure 4.11: The dynamic storage allocation

for four rows, then for eight rows, etc. Accessing an attribute at a par-
ticular position, say retrieving the attribute value of Product of row
007 is done in two steps:

1. Look up the fragment’s start address via the direct mapping table
DM. The address within DM is found by a rather efficient trans-
formation by counting the leading zeros of the 64-bit row number
and subtracting it from the number of positions in DM. In the
example this yields the marked position in the direct mapping
table.

2. Having retrieved the starting address of the corresponding frag-
ment (the third fragment in the example) an address calculation
yields the marked position of the attribute value. This address
calculation is optimized by pre-computing a materialized table
based on the number of rows in the fragment and the attributes’
widths.

The indirection via the direct mapping table incurs little overhead be-
cause it is small enough to fit into the L1 cache and all address trans-
formations are supported by pre-materialization.

68 Systems

4.3.3 Indexing

HyPer uses a new main-memory index that relies on radix-segmentation
of the search key. Therefore, mostly branch- and comparison-free code
can be used to navigate the radix tree index from root to leaf. Each
level of the tree maintains a particular radix fragment – in our case one
byte – of the search key. Before HyPer, radix trees (often called tries)
suffered from poor storage utilization as the maximum degree of fan-
out was maintained in every node. In comparison to balanced search
trees, like AVL- or red/black-trees tries have the “nice” property that
their height is not dependent on the number of indexed objects. Rather,
the length of the search keys determines the height of a radix tree.

The HyPer radix tree design, called Adaptive Radix Tree ART [85],
uses adaptive node sizes depending on the actual fan-out of a node in
order to guarantee a good space utilization. Thus, a node starts out
small with space for a four-way fan-out, then grows to a size for a 16-
way fan-out. If further search keys are inserted, it grows to a 48-way
fan-out and ultimately to a fan-out of 256.

As mentioned above ART employs four adaptively sized node types:

• Node4: This node type has a fan-out of up to four by storing a
maximum of four sorted search keys.

• Node16: Here, up to 16 search keys are store in sorted sequence.

• Node48: In this node type a 256-element array is used with one
entry for each search key. The entries constitute short (i.e., one
byte) pointers to one of the 48 positions where the “real” child
pointer is to be found.

• Node256: Here the 256-element array is used where an entry
holds a pointer to the child node.

Figure 4.12 provides an example of adaptive node types that shows
a sample path from root to leaf of an ART tree that indexes four-
byte integers. The height of this tree is four. The sample path was,
for illustration purposes, constructed in such a way that all four node
types appear in it. The path in the search tree was constructed for

4.3. HyPer 69

13 129130

key child pointer

3 8 9 ……

key child pointer

Node4

Node16

Node48

Node256

0 1 2
… …

child index child pointer

3 255

0 1 2
…

3 255

child pointer

4 5 6

255

0 1 2 3 0 1 2 3

0 1 2 0 1 2 1515

47210

TID TID TID TIDTID TID

2 913 255

byte representation

+218237439 00001101 00000010 00001001 11111111

integer key bit representation (32 bit, unsigned)

Figure 4.12: A sample path with adaptive nodes in the radix tree

the integer search key 218237439, which consists of the four single-byte
portions 13&2&9&255. The root node happens to be of type Node4.
On the way to the leaf the other three node types are encountered.

In designing the node types the focus was on storage efficiency
as well as search efficiency. The node type Node16, for example, was
constructed such that on modern processors with vector instructions
all stored search keys, i.e., all 16 bytes, can be compared in parallel.

Besides node adaptivity two further optimizations have been in-
corporated in ART: Long search keys which lead to a single leaf are
collapsed since no fan-out is needed. As a consequence these leaves are
pulled into the interior of the search tree. Upon insertion of another
key with identical prefix, these nodes sink in the resulting tree to lower
positions. Furthermore, prefixes that are common to all search keys of
a node are “factored out” and stored only once. This is particularly
useful for indexing keys like URLs all prefixed with “http://”. These
techniques in combination with the adaptive node sizing guarantee that
the worst-case space usage per key is bound by 52 bytes.

70 Systems

4.3.4 Concurrency Control

As HyPer is a hybrid OLTP/OLAP engine it is essential to retain fast
scan performance. Therefore, in designing a multi-version concurrency
control scheme for transaction isolation it was important to install the
latest update in place in order to preserve contiguous data placement
such that the processor’s prefetcher can proactively move data into the
caches while scanning the relation. The MVCC was primarily designed
to isolate parallel OLTP transactions. It is still possible to fork OLAP
snapshots for compute-intensive analytical queries.

Figure 4.13 illustrates the version maintenance using a traditional
banking example. For simplicity, the database consists of a single Ac-
counts table that contains just two attributes, Owner and Balance.
HyPer refrains from creating new versions; it instead updates in-place
and maintains the backward delta between the updated (yet uncom-
mitted) and the replaced version in the undo buffer of the updating
transaction. Updating data in-place retains the contiguity of the data
vectors that is essential for high scan performance.

Upon committing a transaction, the newly generated version deltas
have to be re-timestamped to determine their validity interval. Cluster-
ing all version deltas of a transaction in its undo buffer expedites this
commit processing tremendously. Furthermore, using the undo buffers
for version maintenance, the MVCC model incurs almost no storage
overhead as it needs to maintain the version deltas (i.e., the before-
images of the changes) during transaction processing anyway for trans-
actional rollbacks. The only difference is that the undo buffers are (pos-
sibly) maintained for a slightly longer duration, i.e., for as long as an
active transactions may still need to access the versions contained in
the undo buffers. Thus, the VersionVector shown in Figure 4.13 an-
chors a chain of version reconstruction deltas (i.e., column values) in
“newest-to-oldest” direction, possibly spanning across undo buffers of
different transactions. Even for the column store back-end, there is a
single VersionVector per record, so the version chain in general con-
nects before-images of different columns of one record.

Only a tiny fraction of the database will be versioned, as old versions
are continuously garbage collected when no longer needed. A version

4.3. HyPer 71

Thomas

Larry

Alfons

Judy

Tobias

Sally

Hanna

Hasso

Mike

Lisa

Betty

Cindy

Henry

Praveen

Wendy

10

10

10

10

10

7

10

10

10

10

10

10

11

10

11

Accounts
Owner Bal

Vers
io

nVect
or

Ty,Bal,8

T5,Bal,9 T5,Bal,10

Undo-Buffer of Ty (Sallyà...)

Undo-Buffer of T5

Undo-Buffer of T3

T3

T5

re
ce
n
tlyC

o
m
m
itte

d

T3,Bal,10

[0,0[

[0,1[

[2,5[

Vers
io

nPosit
io

ns

In
 co

nst
an

t r
an

ge

[fi
rs

t,l
as

t[

Tx

Ty

Tz

TransactionID
startTim

e

T4

T6

T7

Leser: Σ

SallyàMike

Leser: Σ

Actions

(not stored)

SallyàWendy

SallyàHenry

Actions

(not stored)

com
m

itTim
e

active
Tran

sactio
n
s

Main Memory Column Store

Last version „in place“
Physical Before-Image
in Undo-Buffer

Figure 4.13: Multi-version synchronization of two transaction types: Transfer be-
tween two Accounts (from → to) and summing all Account Bal-ances (Σ)

(reconstruction delta) becomes obsolete if all active transactions have
started after the delta was timestamped. The VersionVector contains
null whenever the corresponding record is unversioned and a pointer
to the most recently replaced version in an undo buffer otherwise.

In the example there are only two transaction types: transfer trans-
actions are marked as “from → to" and transfer $1 from one account to
another by first subtracting 1 from one account’s Bal and then adding
1 to the other account’s Bal. Initially, all Balances are set to 10. The
read-only transactions denoted Σ sum all Balances and—in our “closed
world” example—should always compute $150, no matter under what
startTime-stamp they operate.

All new transactions entering the system are associated with two
timestamps: transactionID and startTime-stamps. Upon commit, up-
date transactions receive a third timestamp, the commitTime-stamp
that determines their serialization order. Initially all transactions are
assigned identifiers that are higher than any startTime-stamp of any
transaction.

72 Systems

Update transactions modify data in-place, retaining the old version
of the data in the undo buffer. This old version serves two purposes:
(1) it is needed as a before-image in case the transaction is rolled back
(undone) and (2) it serves as a committed version that was valid up
to now. While the updater is still running, the newly created version
is marked with its transactionID, whereby the uncommitted version is
only accessible by the update transaction itself. At commit time an up-
date transaction receives its commitTime-stamp with which its version
deltas (undo logs) are marked as being irrelevant for transactions that
start from “now” on. This commitTime-stamp is taken from the same
sequence counter that generates the startTime-stamps.

In the example, the first update transaction that committed at
timestamp T3 (Sally → Wendy) created in its undo buffer the version
deltas timestamped T3 for Sally’s and Wendy’s balances, respectively.
The timestamp indicates that these version deltas have to be applied
for transactions whose startTime is below T3 and that the successor
version is valid from there on for transactions starting after T3. At
startTime T4 a reader transaction with transactionID Tx entered the
system and is still active. It will read Sally’s Balance at reconstructed
value 9, Henry’s at reconstructed value 10, and Wendy’s at value 11.
Another update transaction (Sally→ Henry) committed at timestamp
T5. Again, the versions belonging to Sally’s and Wendy’s balances that
were valid just before T5’s update are maintained as before images in
the undo buffer of T5. Note that a reconstructed version is valid from its
predecessor’s timestamp until its own timestamp. Sally’s Balance ver-
sion reconstructed with T5’s undo buffer is thus valid from timestamp
T3 until timestamp T5. If a version delta has no predecessor (indicated
by a null pointer) such as Henry’s balance version in T5’s undo buffer its
validity is determined as from virtual timestamp “0” until timestamp
T5. Any read access of a transaction with startTime below T5 applies
this version delta and any read access with a startTime above or equal
to T5 ignores it and thus reads the in-place version in the Accounts
table.

The deltas of not yet committed versions receive a temporary times-
tamp that exceeds any “real” timestamp of a committed transaction.

4.3. HyPer 73

This is exemplified for the update transaction (Sally → Henry) that
is assigned the transactionID timestamp Ty of the updater. This tem-
porary, very large timestamp is initially assigned to Sally’s Balance
version delta in Ty’s undo buffer. Any read access, except for those of
transaction Ty, with a startTime-stamp above T5 (and obviously be-
low Ty) apply this version delta to obtain value 8. The uncommitted
in-place version of Sally’s balance with value 7 is only visible to Ty.

Serializability Validation

HyPer’s MVCC approach deliberately avoids write-write conflicts, as
they may lead to cascading rollbacks. If another transaction tries to up-
date an uncommitted data object, it is aborted and restarted. There-
fore, the first VersionVector pointer always leads to an undo buffer
that contains a committed version — except for unversioned records
where the pointer is null. If the same transaction modifies the same
data object multiple times, there is an internal chain of pointers within
the same undo buffer that eventually leads to the committed version.

In order to retain a scalable lock-free system, HyPer relies on opti-
mistic execution in its MVCC model. Without any further validation
the described CC scheme guarantees (only/already) snapshot isolation.
To guarantee full serializability, a validation phase is needed at the end
of a transaction that ensures all reads during transaction processing
can be read (logically) at the very end of the transaction without any
observable change. Validation detects four relevant transitions: modi-
fication, deletion, creation, and creation&deletion of an object that is
“really” relevant for the transaction T . For this purpose, transactions
draw a commitTime-stamp from the counter that is also produces the
startTime-stamps. The newly drawn number determines the serializa-
tion order of the transaction. Only modifications that were committed
during T ’s lifetime, i.e., in between the startTime and the commitTime,
are relevant if these modified/deleted/created objects really intersect
with T ’s read predicate space.

As opposed to previous validation schemes that may need to re-
check large read sets (and scan sets), HyPer limits the validation to the
number of recently changed and committed data objects, no matter how

74 Systems

Bal

In
te

re
st

P3:
I between .1 and .2 and
B between 10 and 20

P1:
I = 1.4

X

P2:
I=1 and
B=15

X X

X

X

Undo-Buffers
to be validated

Predicate Space (for three predicates)

Conflict

Intersection of X with predicate

1.4

0.2

0.1

10 20

[I=0.15,B=17]

Figure 4.14: Validating data (Points) in the redo buffers against the predicate
space of a transaction

large the read set of the transaction was. For this purpose, HyPer uses
an old (and largely “forgotten”) technique called Precision Locking [69]
that eliminates the inherent satisfiability test problem of predicate lock-
ing. This variation of precision locking tests discrete writes (updates,
deletions, and insertions of records) of recently committed transactions
against predicate-oriented reads of the transaction that is being vali-
dated. Thus, a validation fails if such an extensional write intersects
with the intensional reads of the transaction under validation [155]. The
validation is illustrated in Figure 4.14, where transaction T has read
objects under the three different predicates P1, P2, and P3, which form
T ’s predicate space. We need to validate the three undo buffers at the
right and validate that their objects (i.e., data points) do not intersect
with T’s predicates. This is done by evaluating the predicates for those
objects. If the predicates do not match, then there is no intersection
and the validation passes, otherwise, there is a conflict.

In order to find the extensional writes of other transactions that
committed during the lifetime of a transaction T , HyPer maintains a
list of recentlyCommitted transactions, which contains pointers to the
corresponding undo buffers. Validation starts with the undo buffers of
the oldest transaction that committed after T ’s startTime and traverses

4.3. HyPer 75

to the youngest one (Figure 4.13 at the bottom of the list). Each of the
undo buffers is examined as follows: For each newly created version,
validation checks whether it satisfies any of T ’s selection predicates.
If this is the case, T ’s read set is inconsistent because of the detected
phantom and it has to be aborted. For a deletion, validation checks
whether or not the deleted object belonged to T ’s read set. If so, T is
aborted. For a modification (update) both the before and after image
is validated. If either intersects with T ’s predicate space, it is aborted.
Figure 4.14 depicts this situation, where the data point x of the lowest
undo buffer satisfies predicate P3, meaning that it intersects with T ’s
predicate space.

After successful validation, a transaction T is committed by first
writing its commit into the redo-log (which is required for durabil-
ity). Thereafter, all of T ’s transactionID timestamps are changed to
its newly assigned commitTime-stamp. Due to version maintenance in
the undo buffers, all these changes are local and therefore very cheap.
In case of an abort due to a failed validation, the usual undo-rollback
takes place, which also removes the version delta from the version chain.
Note that the serializability validation in the MVCC model can be per-
formed in parallel by several transactions whose serialization order has
been determined by the commitTime-stamps.

4.3.5 Query Processing

An expressive scripting language is the key to pushing application logic
(as stored procedures) directly into the database system, instead of re-
lying on an application server. For this purpose, HyPer uses the HyPer-
Script language that integrates declarative SQL with imperative con-
structs, such as loops and branches. As an example, we use the skeleton
of the newOrder procedure of the TPC-C benchmark. This procedure
inserts a new customer order consisting of a variable number of order
positions that are passed as a table-valued parameter positions.

76 Systems

create procedure newOrder (w_id integer not null, ...,
table positions(line_number integer not null,

supware integer not null,
itemid integer not null,
qty integer not null),

datetime timestamp not null) // TABLE-valued parameter above
{

select w_tax from warehouse w where w.w_id=w_id;
... // w_tax value used later
insert into orderline // insert all the order positions

select o_id,d_id,w_id,line_number,itemid,supware,null,qty,
qty*i_price*(1.0+w_tax+d_tax)*(1.0-c_discount),
...

from positions, item, stock
where itemid=i_id and s_w_id=supware and s_i_id=itemid

returning count(*) as inserted; // how many were inserted?

if (inserted<cnt) rollback; // not all=>invalid item=>abort
};

HyPerScript allows “normal” SQL queries whose result is used later
in the program. This is exemplified by the first query that selects the
tax rate of a particular warehouse and later uses this variable w_tax
when the order position is inserted into the relation orderline. This
sample script first extracts the relevant information from the underlying
tables using SQL queries. Then the new order record is created, a
reference to this record is also inserted into the table neworder. Then
the stock table is updated for bookkeeping of this new order. In the last
steps, the individual order positions, as passed in the table parameter
positions, are inserted into the orderline table. For this purpose the
aggregated price is calculated, including taxes and reduced according
to the discount. At the end, the script tests whether or not all order
positions were successfully inserted. If not, the entire transaction (i.e.,
the newOrder script) has to be rolled back.

Using a declarative scripting language has many advantages:

1. It is easier to analyze declarative scripts to detect security prob-
lems. This is crucial if the stored procedures run in the same
process as the actual database server.

4.3. HyPer 77

2. The embedded SQL queries can be optimized by the regular query
optimizer. HyPer also uses the same compilation technique that
was developed for queries – as described in the next section.

3. The resulting scripts are very concise and, therefore, quite read-
able as our sample application demonstrates.

Compilation of Queries and Transactions

As introduced in Chapter 3, HyPer deviates from the interpretative
processing model and compiles entire (logically optimized) query plans
into machine-level code. Other than traditional iterator-based execu-
tion models the HyPer query evaluation code is generated for an entire
pipeline. For this purpose, the logically optimized algebra tree is seg-
mented into its largest-possible pipelines, i.e., all algebra operations in
between two pipeline breakers. This is exemplified for the query plan
that evaluates the following join query

select *
from R, S, T
where T.x=7 and S.y=3 and R.z>5 and

T.B=S.B and S.A=R.A

In terms of the relational algebra it constitutes the following three-way
join with prior (pushed down) selections:

σz>5R ./A σy=3S ./B σx=7T

The logical optimization may have resulted in the algebra plan
shown in Figure 4.15 . Figure 4.16 shows the generated code – for
simplicity this is pseudo-code instead of LLVM code.

The HyPer compiler is constructed in a modular fashion by invok-
ing the produce/consume interface function as associated with each
supported operator. In contrast to the interpreted iterator model, these
functions are invoked at compile time. In order to generate data centric
code, pipeline operators directly invoke the consume-function of their
parent operator. Thereby, the once materialized data object remains in
processor registers for seamless evaluation of all operations within one

78 Systems

BB

BA

S R

v vT

v

Figure 4.15: Algebra
tree

initialize memory of hash tables ./A, ./B

for each tuple t in T
if t.x = 7

materialize t in hash table of ./B

for each tuple s in S
if s.y = 3

materialize s in hash table of ./A

for each tuple r in R
if r.z > 5
for each match s in ./B [r.B]
for each match t in ./A [s.A]

output r ◦ s ◦ t

Figure 4.16: Generated pseudo-code

pipeline. This is particularly prominent in our example pseudo-code for
the probing pipeline that starts with a tuple r, determines whether or
not the selection predicate (z > 5) holds, then probes the first hash
table ./A to retrieve one matching tuple s that has the same A-value
as r (one after another) and then probes the hash table ./B to, again,
retrieve one-by-one matching t-tuples and materializes the combined
tuple (r ◦ s ◦ t).

The algebraic operator model is very useful for reasoning about
queries during query optimization, but does not mirror how queries are
executed at runtime. For example, the three lines in the first code frag-
ment of Figure 4.16 belongs to the table scan T , the selection t.X = 7,
and the building of the hash join table for ./B respectively. Never-
theless, the query compiler logically works on an operator tree, which
was produced by the query optimizer, and statically transforms the
operator tree into executable code. Conceptually, each operator offers
a unified interface that is quite different from the iterator model but
almost as simple: It can produce tuples on demand, and it can con-
sume incoming tuples from a child operator. This conceptual interface
allows to generate data-centric code, while retaining the composabil-
ity of the algebraic operator model. Note, however, that this interface

4.3. HyPer 79

C++
scan

C
+
+

C+
+

Figure 4.17: Combining C++ and LLVM code

is only a concept used during code generation – it does not exist at
runtime. That is, these functions are only used to generate the appro-
priate LLVM code for producing and consuming tuples, but they are
not called at runtime.

In theory one could generate the entire code for every individual
query. However, to reduce the size and complexity of the code that is
generated for the subsequent just-in-time compilation it is beneficial
to implement the core of the operators (e.g., hash join, index nested
loops join, hash aggregation, sorting) beforehand and merely generate
the query dependent code dynamically. To ease the implementation
this functionality is typically written in C++ instead of LLVM. In that
respect, the generated LLVM code constitutes the chain that drives
the cog wheels of the pre-fabricated code base – as exemplified in Fig-
ure 4.17.

Massively Parallel Query Processing: Joins

The HyPer Query Engine fully utilizes the multi-core compute power
of modern processors by intra-operator parallelism. This section sum-
marizes HyPer’s innovation in this area by describing strategies for one
of the most important operators: the join. In the near future, database
servers will have hundreds of compute cores. This requires that the
parallel processing tasks have to be as autonomous as possible without
synchronization points which would likely lead to idle waiting times of
many cores. The more cores the more severe are the effects of Amdahls

80 Systems

law. Because of the non-uniform memory access (NUMA) characteris-
tics of multi-core servers with large DRAM capacity it is not sufficient
to merely parallelize the computation. It is also essential to allocate
computational tasks locally.

Massively Parallel Sort/Merge-Join. HyPer’s massively paral-
lel sort-merge (MPSM) join is designed to take NUMA architectures
into account which were not yet in the focus of prior work on parallel
join processing for main memory systems. MPSM relies on chunking
the arguments into as many equally sized fragments as there are avail-
able cores for parallel processing. Unlike traditional sort-merge joins,
MPSM refrains from merging the sorted runs to obtain a global sort
order and rather joins them all in a brute-force but highly parallel man-
ner, opting to invest more into scanning in order to avoid the hard-to-
parallelize merge phase. Obviously, this decision does not result in a
globally sorted join output but exhibits a partial sort order that still
allows for sort order based subsequent operations, e.g, early aggrega-
tion. During the subsequent join phase, data accesses across NUMA
partitions are sequential, so that the prefetcher mostly hides the access
overhead. Details of MPSM can be found in [9].

Parallel Radix-Hash-Join. The sort/merge-join uses sorting to
efficiently join objects via (almost) linear synchronous scans. Unfortu-
nately, sorting is still costly. The hash join idea is quite simple in the
case of equi-joins. One of the join argument relations is inserted into
a hash table (called the build input) and the other relation (called the
probe input) is sequentially scanned and probed into this hash table to
find matching join partners.

One possibility to parallelize this hash join algorithm consists of
partitioning the argument relations prior to the actual hash join eval-
uation. Here, a radix partitioning is obviously a very efficient way as
it allows to partition relations without costly value comparisons and
branching. After partitioning, a thread can independently build hash
tables for their partitions.

It is obvious that the hash tables exhibit a low degree of cache
locality during the build as well as during the probing phase. Basically,
each access can be expected to induce a cache fault. Therefore, it is

4.3. HyPer 81

beneficial to partition the argument relations into smaller fragments
such that the resulting hash table fits into the processor’s cache in order
to avoid these costly cache misses. However, partitioning the relation
“in one go” into too many partitions is also detrimental to performance
because then the copying into the fragments incurs too many cache
misses – in particular, the translation lookaside buffer (TLB) becomes
too small to hold all page table entries for all write positions. Therefore,
a multi-step partitioning can be used.

Parallel Hash-Join without Partitioning. The radix join in-
curs relatively high copy costs which is, hopefully, amortized by the
higher cache locality during building and probing the hash table. In
any case, the radix join incurs additional storage cost for maintaining
the partitions. Therefore, in a main-memory setting it is a straight-
forward idea to leave the (typically much larger) probe input in place
and merely copy the (smaller) build argument relation into the hash
table. In this procedure the build phase requires special attention be-
cause many workers are inserting data in parallel into this hash table.
This requires short-term latches on the hash table bucket into which
a worker inserts a new data item. These so-called latches could be im-
plemented with efficient compare-and-swap machine code statements.
The latches which are set with this instruction should be associated
directly with the hash bucket to guarantee that they are stored in the
same cache line.

After building the hash table, the probe phase can be carried out in
parallel without any synchronization overhead because the workers only
read from the hash table. Every worker works on a (at best, NUMA-
local) chunk of the probe argument and determines join partners for
these tuples within the hash table. Obviously, this join method is par-
ticularly effective if one of the argument relations, i.e., the build input,
is (much) smaller than the other probe argument. This simple join
method is, in addition, particularly useful for pipeline parallelism [76]
– as exemplified in Figure 4.18 where the probe pipeline covers the
two hash table probes. Note that pipelining across multiple join hash
tables is not possible with the radix join as every binary join requires
its individual partitioning.

82 Systems

A
16

18
27

5

7

B
8

33
10

5

23

B
8
33
10

5

23

C
v
x
y

z

u

HT(S)HT(T)

A
16
7
10
27
18
5
7
5
...
...
...
...
...

Z
a
c
i
b
e
j
d
f
...
...
...
...
...

RZ
a
...
...

A
16
...
...

B
8
...
...

C
v
...
...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z
b
...
...

A
27
...
...

B
10
...
...

C
y
...
...

morsel

morselDispatcher

Figure 4.18: Idea of fine-granular parallelization: R ./A S ./B T . The data chunks
(morsels) are assigned to NUMA-local worker threads

Adaptive Morsel-Wise Parallelization and Workload Management

The main impetus of hardware performance improvement nowadays
comes from increasing multi-core parallelism rather than from speed-
ing up single-threaded performance. We use the term many-core for
architectures with tens or (soon) hundreds of cores.

In main-memory database systems, query processing is no longer
I/O bound, and the huge parallel compute resources of many-cores
can be truly exploited. Unfortunately, the trend to move memory con-
trollers into the chip and hence the decentralization of memory access
lead to non-uniform memory access (NUMA). In essence, the computer
has become a network in itself as the access costs of data items varies
depending on which chip the data and the accessing thread are located.
Therefore, many-core parallelization needs to take RAM and cache hi-
erarchies into account. In particular, the NUMA division of the RAM
has to be considered carefully to ensure that threads work (mostly) on
NUMA-local data.

4.3. HyPer 83

To address these challenges the adaptive morsel-driven query ex-
ecution framework [83] was developed that controls HyPer’s parallel
operators. The approach is sketched in Figure 4.18 for a three-way-
join query R ./A S ./B T . Parallelism is achieved by processing each
pipeline on different cores in parallel, as indicated by the two (up-
per/red and lower/blue) pipelines in the figure. The core idea is a
scheduling mechanism (the “dispatcher”) that allows flexible parallel
execution of an operator pipeline, that can change the parallelism de-
gree even during query execution. A query is divided into segments,
and each executing segment takes a morsel (typically 100,000) of in-
put tuples and executes these, materializing results in the next pipeline
breaker. The morsel-framework enables NUMA local processing as in-
dicated by the color coding in the figure: a thread operates on NUMA-
local input and writes its result into a NUMA-local storage area. The
dispatcher runs a fixed, machine-dependent number of threads, such
that if new queries arrive there is no resource over-subscription. And
these threads are pinned to the cores, such that no unexpected loss of
NUMA locality can occur due to the OS moving a thread to a different
core.

The crucial feature of morsel-driven scheduling is that task distribu-
tion is done at run-time and is thus fully elastic. This allows to achieve
perfect load balancing, even in the face of uncertain size distributions
of intermediate results, as well as the hard-to-predict performance of
modern CPU cores that varies even if the amount of work they get is
the same. It is elastic in the sense that it can handle workloads that
change at run-time (by reducing or increasing the parallelism of already
executing queries in-flight) and can easily integrate a mechanism to run
queries at different priorities.

The morsel-driven idea extends from just scheduling into a complete
query execution framework in that all physical query operators must
be able to execute morsel-wise in parallel in all their execution stages
(e.g., both hash-build and probe), a crucial need for achieving many-
core scalability in the light of Amdahl’s law. An important part of the
morsel-driven framework is awareness of data locality. This starts from
the locality of the input morsels and materialized output buffers, but

84 Systems

tim
eOLTP Requests / Tx

Virtual Memory

B
a
cku

p
 P

ro
ce

ss

O
LAP Session

O
LAP Session

Storage

Server
Tx-consistent

DB-Archive

Redo-

Log

a’

c

a’’’

b

d

c’
a’’

b

a’

b

a

b

d

c

Undo

-Log

Figure 4.19: Redo-logging and database backup

extends to the state (data structures, such as hash tables) possibly
created and accessed by the operators. This state is shared data that
can potentially be accessed by any core, but does have a high degree of
NUMA locality. Thus morsel-wise scheduling is flexible, but strongly
favors scheduling choices that maximize NUMA-local execution. This
means that remote NUMA access only happens when processing a few
morsels per query, in order to achieve load balance. By accessing local
RAM mainly, memory latency is optimized and cross-socket memory
traffic (that can slow other threads down) is minimized.

4.3.6 Durability and Recovery

For atomicity HyPer writes an undo log that need not be written to
stable storage. It is merely maintained as a ring buffer in DRAM as its
entries can be safely overwritten as soon as a transaction is finished.
The durability of transactions requires that all effects of committed
transactions have to be restored after a failure. To achieve this HyPer
employs classical redo logging. This is highlighted by the gray ovals em-
anating from the transaction stream leading to the non-volatile Redo-
Log storage device in Figure 4.19. Initially, HyPer used logical redo

4.3. HyPer 85

logging by logging the parameters of the stored procedures that rep-
resent the transactions. In traditional database systems logical logging
is problematic because after a system crash the database may be in an
action-inconsistent state. This cannot happen in HyPer as it restarts
from a transaction consistent archive (cf. Figure 4.19). Nevertheless,
logical logging turned out to be problematic as it requires fully deter-
ministic transactions, which is hard to achieve in practice. In partic-
ular, aborted transactions may alter the sequence in which tuples are
retrieved in SQL statements. Therefore, HyPer switched to physical
logging which incurs higher log volumes because all updates are logged
by pushing the corresponding after-image values into the log stream.

HyPer can also exploit the VM snapshots for creating backup
archives of the entire database on non-volatile storage. This process
is sketched in Figure 4.19. Typically, the archive is written via a high-
bandwidth network of 10 to 100 Gb/s or even via RDMA in an In-
finiband cluster to a dedicated storage server within the same compute
center. To maintain this transfer speed the storage server has to employ
several (around 10) disks for a corresponding aggregated bandwidth.

In the ScyPer scale-out extension of HyPer the redo log was used
to “feed” secondary server(s) as stand-by OLTP processors in case of
primary server failure. THE VM snapshotting mechanism allows to
fork consistent snapshots for OLAP processing on the secondary server
– thereby load-balancing analytical query processing between primary
and secondary servers.

4.3.7 Further Reading

The HyPer architecture including its virtual memory snapshotting
was first introduced in 2011 [72]. The virtues and performance of the
snapshotting based on virtual memory management versus software-
controlled mechanisms was analyzed in [104]. The pioneering JIT com-
pilation of queries and transaction scripts was developed in [109]. Pirk
et al [123] analyzed the effect of hybrid storage representations that
span the entire design space between column- and row-stores. While
column-stores excel for analytics and row-stores are best for transac-
tions, processing the optimal representation is work-load dependent.

86 Systems

The scale-out of HyPer to multiple nodes in a cluster is described
in a series of papers [106, 132]). For very fast Infiniband networking in-
frastructures specialized RDMA-based communication protocols of the
query engine were analyzed by Roediger et al [131]. Muhe et al ana-
lyzed the use of HyPer for multi-tenancy applications [105]. The small
footprint of HyPer allows to allocate a dedicated instance of HyPer
for every tenant; thereby achieving complete separation of the data of
different tenant which is beneficial from a security point of view.

The massively parallel sort-merge join MPSM was developed by [9].
[76] describes the pipelined hash join that relies on a global hash table,
as proposed by [22]. It is particularly beneficial compared to radix-
partitioning joins like the one analyzed in [15] if multiple joins can be
performed in one pipeline or when one of the join arguments is smaller
than the other. Based on these algorithms a comprehensive paralleliza-
tion of the HyPer query engine was devised in [83]. The Adaptive Radix
Tree ART was designed in [85].

HyPer has advanced SQL window functions for powerful decision
support functions; Leis et al showed how these window functions are
effectively parallelized on a multi-core server [87] . HyPer has an ad-
vanced query unnesting method that was described in [110]. The over-
all query optimizer of HyPer was evaluated in comparison to other
market-leading systems in [84]. The multi-version concurrency control
was described in [111]. The synchronization of data structures is sup-
ported by the recent hardware transactional memory features of Intel
Haswell processors, as described in [86].

4.4 SAP HANA

4.4.1 Introduction

Main memory processing within SAP started years before HANA was
born. The earliest direct predecessor of SAP HANA was the TREX
text search engine (built in 2001) that stored meta data attributes of
documents were in columnar format within main memory. Even at that
time, keeping these data sets in main memory was not critical because
of the small memory footprint of document attributes. The next step of

4.4. SAP HANA 87

the main memory technology in 2005 was the development of BWA, the
SAP Business Warehouse accelerator. Using the BWA, selected data
cubes of an SAP Business Warehouse (SAP BW) deployment could
be replicated out of traditional disk-based database systems into the
BWA for fast query processing especially to accelerate typical OLAP-
style queries (e.g. aggregation operations along dimension hierarchies).
Already in 2005 the price-benefit relation of memory cost versus per-
formance was acceptable for many customers and BWA became very
popular for SAP BW customers. As a logical next step, the idea was
born to join forces within different product groups within SAP and
start SAP HANA following a step-wise evolution approach from sup-
porting data-mart scenarios extending SAP BW installations to adding
more traditional database functionality: The column-based technology
of TREX/BWA was used as the foundation for the column-store en-
gine. P*TIME [28] – an in-memory database solution acquired by SAP
in 2005 – contributed the row-store engine, the SQL subsystem as well
as connection management. The MaxDB engine mainly contributed the
persistency layer as well as the surrounding infrastructure/tools.

Hasso Plattner developed the vision to not only have one single
system for an integrated data management platform, but also to com-
pletely rely on in-memory technology to exploit the capabilities of mod-
ern hardware. Driven by modern business application requirements
to tightly couple operational as well as tactical and strategic busi-
ness decisions, the overall goal was to satisfy OLTP as well as OLAP
workloads tearing down the wall between operational ERP and tradi-
tional DWH-systems solely used to support decision-making processes.
Looking back, the decision to focus on in-memory technology was the
right decision: a standard ERP deployment exhibits an uncompressed
database volume of roughly 5 TByte, a size accommodated by com-
modity server hardware. Even the largest SAP BW installation with
a size of 100 TB can be accommodated with a reasonable hardware
scenario using SAP HANA’s compression schemes (see Section 4.4.2).
Implementing a tight integration with data management infrastructure
from SAP Sybase ranging from data stream engines (SAP Sybase ESP)
to SAP Sybase IQ using a dynamic tiering approach, HANA supports

88 Systems

enterprise-scale big data requirements and provides a solid foundation
to satisfy modern business applications as well as data scientists work-
ing on the same data set [98].

Combination of OLTP and OLAP

Since the early days of the SAP HANA project, one its main design
tenants was to allow the reunification of transactional and complex
analytical workloads in the context of a single database management
system [124]. While this seems to contradict the observation that one
size does not fit all [141] at first glance, a second glance reveals that
there are several scenarios where a system that performs reasonably
well in one aspect (e.g., sustaining the OLTP workload of a large en-
terprise resource management (ERP) system [78]) and excels in another
aspect (e.g. very fast OLAP performance) can add significant benefits
for end users.

To deal with OLTP scenarios that require a very high through-
put, SAP HANA incorporates an in-memory row store that is built on
the foundation of the P*TIME system [28]. On an abstract level, the
row store shares several key concepts and design choices (e.g. latch-free
indexing) with the Hekaton system discussed in Chapter 4.1. How-
ever, to avoid redundant data storage in row and columnar format,
the goal of the SAP HANA column store is to perform reasonably well
for large-scale OLTP operations and excel in allowing complex analyt-
ical operations on fresh data without any propagation delays or data
redundancy.

For the columnar data store in SAP HANA, the challenge was to
design the system in a way that allows for handling the character-
istic workloads of an OLTP system (e.g. primary-key based lookup
operations, key/foreign key joins with high selectivity, in-place update
operations, full record retrieval) without compromising OLAP perfor-
mance [138]. To this end, several OLTP optimizations were introduced:

1. Query plan generation. In the initial design, the query com-
piler did not use the concept of prepared statements for the
SAP HANA column store. While this concept works excellent for

4.4. SAP HANA 89

complex OLAP workloads, OLTP queries are often very simple.
Therefore, the query compilation overhead (of a few milliseconds)
is prohibitively expensive, mandating the use of prepared state-
ments and plan shortcuts for OLTP.

2. Parallelization considered harmful. The runtime system and
query processing operators in SAP HANA make heavy use of
parallelization on all possible levels as discussed in Section 4.4.5.
While this is extremely beneficial to achieve good reporting per-
formance for complex analytical queries, parallelization can be
considered harmful for OLTP operations: For example, perform-
ing a simple key/foreign key join operation for a very small result
set with parallelization enabled, easily increases the runtime by
a factor of two due to the high overhead of job scheduling and
context switches. Consequentially, the query compiler and run-
time system in SAP HANA put a lot of effort in deciding on the
right parallelization strategy depending on query complexity and
system workload.

3. Concurrent OLTP and OLAP scheduling. The various de-
sign choices and optimizations discussed in this section enable
the columnar store in SAP HANA to handle high-volume OLTP
workloads. While the system does not excel at this task due
to the drawbacks of columnar storage and dictionary compres-
sion for transactional workloads, this approach enables the ex-
ecution of complex analytical queries without data redundancy,
data replication or additional tuning (e.g. heavy indexing or us-
age of materialized views). However, additional care needs to be
taken to ensure that complex analytical queries do not impact
the (high amount of) concurrent OLTP operations: blocking or
stalling them (e.g. by heavily parallelizing OLAP queries lead-
ing to resource unavailability) can easily cause queuing effects
in the transactional workload and have negative impact on the
overall system. Consequentially, the workload management com-
ponents in HANA ensure that OLTP operations are never stalled
by careful workload monitoring and class-based query scheduling,

90 Systems

i.e., transactional operations are a high-priority query class that
is preferred over OLAP queries [125].

4.4.2 Data Organization

The in-memory data representation of SAP HANA is designed to fulfill
two fundamental requirements: processing performance of complex, an-
alytical queries needs to be maximized as well as the memory footprint
should be minimized at the same time to allow for handling large data
volumes with reasonable amounts of hardware.

Dictionary Compression. All data stored in columnar format
uses dictionary compression. Besides reducing the memory footprint,
dictionary compression also enables highly efficient scan operations as
discussed in Section 4.4.5. Additionally, the dense domain coding can
also be leveraged in other parts of the system and often provides in-
teresting and non-obvious benefits (e.g. for keeping very compact his-
tograms [101]). Consequentially, every column stored in SAP HANA
consists of the two core data structures depicted in Figure 4.20, with
the dictionary storing all the distinct values that occur in a partic-
ular column and the index vector indicating which value is stored in
a particular row of this column. While Figure 4.20 depicts the posi-
tions together with the corresponding value/valueID, these positions
are purely virtual and can be calculated from the offset in the data
structure. Each column can optionally be extended with an index to
facilitate processing highly selective queries (e.g. OLTP workloads as
discussed in Section 4.4.1). Indexes leverage dictionary compression
and are implemented as an inverted list, mapping valueIDs to the cor-
responding row numbers.

Delta/Main Concept. To achieve a maximum of query processing
performance, SAP HANA keeps the dictionaries sorted. This enables
the runtime system to perform comparisons directly on the dictionary-
encoded values (e.g. whenever a < b holds for a particular set of values,
the same holds true for corresponding valueIDs). While this property
is very beneficial for range queries, it imposes additional challenges for
update processing: when adding a new literal to the dictionary, the val-
ueID of the successor entries in the dictionary need to be incremented,

4.4. SAP HANA 91

Index Vector Dictionary
position valueID position value

1 3 1 Adam
2 2 2 Adriana
3 1 3 Alexa
4 3
5 1

Figure 4.20: Columnar Data Organization

potentially resulting in a large number of entries in the index vec-
tor that need to be updated. Typically, this makes update operations
prohibitively expensive. To avoid this problem, all columnar tables in
HANA are separated into two parts, the main and the delta.

The main part of a column consists of a sorted dictionary and an
index vector. All insert operations into a table are handled by the delta
part consisting of an index vector (similar to the main), an unsorted
dictionary (to avoid the re-coding problem outlined above), as well as
a tree-based index structure to provide fast access to the dictionary.
Whenever a new entry is inserted into the delta, the index is used to
check whether the corresponding literal is already stored in the dic-
tionary. If so, the corresponding valueID is retrieved, otherwise a new
entry is added to the tail of the dictionary structure and to the tree
index. Updates are modeled as a sequence of deletes and inserts. Rows
from the main part that need to be deleted are tracked by a separate
bit vector.

While the delta part of a table avoids to re-encode large parts of
the index vector in case of updates, query processing has to consult
both data structures. Moreover, most of the core data access primi-
tives on the delta are not as efficient as for the main part. Moreover,
its additional index structure consumes main memory, thus conflicting
with the goal of high data compression. To avoid these drawbacks, the
system periodically consolidates the delta into the main in an opera-
tion called delta merge. The optimal point in time when to perform a
delta merge results on a cost-based decision automatically taken by the

92 Systems

system based on a cost function that (among others) considers the size
of delta and main (in terms of main memory, number of records, and
disk footprint), as well as the current system workload.

Compression Techniques

To keep the overhead of compression at a minimum, SAP HANA only
uses lightweight compression techniques that allow efficient access both
to individual values and to blocks of values. The basis for all of the
following techniques is domain coding that is applied for each column
independently [107]. For domain coding, each of the n distinct values
of a column gets assigned an integer code between 0 and n−1 and each
value of the column is replaced by its code word stored in the dictionary.
The sequence of code words (index vector) is then stored as a bit stream
where every code word just uses a fixed number of b = dlog ne bits.
This index vector is then subject to further compression using one of
several techniques.

Prefix coding. This is the simplest compression technique, where
repetitions of the same value at the start of a column are deleted and
replaced by one value and its frequency. If the most frequent value
appears not only in the prefix but is also scattered among the other
values, then good compression can be achieved with sparse coding. With
sparse coding, all appearances of the most frequent value are deleted
and their positions are stored in a bit vector with prefix coding applied.

Cluster coding. With this technique the data is blocked and only
blocks with a single distinct value are compressed by storing only the
single value. Additionally, a bit vector is needed to indicate which blocks
are compressed, in order to be able to reconstruct the original column.
If the data blocks contain more than one but still only few distinct
values, indirect coding can be used.

Indirect coding. In this procedure, domain coding is applied to
suitable blocks, which adds the indirection of requiring a separate mini-
dictionary for each block. To reduce the number of dictionaries and
hence the memory consumption, one dictionary can be used for succes-
sive blocks as long as any new entry in the dictionary does not increase
the number of bits required to code the entries. A block is only com-

4.4. SAP HANA 93

pressed if and only if the dictionary and the references take less space
than the original (domain coded) data.

Run length encoding. The final compression technique presented
here is a slightly modified variant of run-length encoding, which com-
presses runs of repeated values to a single value for each run together
with the number of repetitions in the run. The cumulative sum of the
frequencies of the previous values yields the start position of each value
in the run. As this imposes a big overhead SAP HANA slightly reduces
the compression by storing only the start position and not the number
of repetitions.

The column ordering problem. For maximum compression the
presented techniques favor long ranges of the same values as a result of
a sorted representation. Unfortunately, the columns cannot be sorted
independently of each other, because the position of a value reflects the
position of its row in the table. Decoupling the value positions from the
row positions would require an expensive mapping of values to rows.
The sequences of code words with the same value are called remain-
der segments. The column ordering problem consists in identifying the
optimal global sort order to achieve largest possible remainder seg-
ments. Since the solution space grows exponentially with the number
of columns, it is practically impossible to find an optimal solution to
the column ordering problem. Therefore SAP HANA deploys several
greedy heuristics that represent a compromise between reduced run
time and reduced memory consumption. The simplest heuristic sorts
the most frequent value in each column to the top, taking account of
the dependencies between the columns. Using more advanced methods,
the remainder segments can be further sorted without disrupting the
existing ordering.

Data Aging

Business data is typically accessed frequently in the beginning of its life-
cycle, when the corresponding business processes are still active. After
some time, dependent on its status, the data is not accessed as part of
the regular working set any more during normal operation. However, it
may happen that old data becomes interesting again, for example when

94 Systems

running analysis over multiple years, when accessing the order history
of a customer, or during an audit. This observation is often character-
ized with the data temperature metaphor. Operationally relevant data
is called ‘hot’, and data that is no longer accessed during normal oper-
ation is called ‘cold’. We use ‘current’ and ‘historical’ as synonyms. The
data temperature can be used to horizontally partition the application
data for optimizing resource consumption and performance. The pro-
cess of moving data between the different partitions (i.e. from current
to historical partitions) is called data aging.

The goal of aging is to both reduce the main memory footprint and
speed up database queries by keeping only operationally relevant data
in main memory. Historical data may be stored, loaded, and accessed
differently, but remaining accessible via SQL. An aging concept has
to match the needs and specifics of the application: applications store
data differently, have different table schemes, and have different access
patterns. For BW on SAP HANA, aging works almost transparently.
BW partitions the data by range using a time dimension which is a
primary key column, making aging an inherent part of the physical
database design. Older data gets less frequently requested by users,
thus corresponding partitions typically reside on disk.

More generally, business objects often span multiple tables, for ex-
ample header and lineitem tables. They have statuses (like order fulfill-
ment), but such a status might only be set in one of the tables. Using
a status as partitioning column is therefore usually neither sufficient
nor always possible as partitioning always relates to the columns of a
single table where the tuple is stored in.

In order to maintain a brace for the tables that make up a business
object and to be backwards compatible for applications, SAP HANA
holds an artificial temperature column for aging-aware tables. The ap-
plication actively sets values in this column to a date to indicate that
the object is closed and the row shall be moved to the cold partition(s).
It does so consistently for all related tables of the same business object,
or even for a group of related business objects.

From an application perspective, a default restriction to “hot only”
means that rows in cold storage are not present anymore, as if they were

4.4. SAP HANA 95

deleted. Therefore, the applications have to align on the aging criteria
and finally pay attention which rows or business objects are moved to
the cold partitions in order to always provide correct result sets. For
data access, this means that the data is always consistent when it is
being read in one of the two ways, either hot only or cold with a given
date and everything newer than this date, including the hot partition.

For OLTP processing, the application typically uses a predicate to
access hot data only. A generic SQL extension can be used to filter cold
data while applying the semantic rules outlined above. Data of cold par-
titions may be read page-wise, reading only a minimal set of data from
disk. This is opposed to the standard load behavior of columns that
read everything into memory before processing it. Pages with cold data
will be loaded into a page pool where an LRU mechanism is applied.

4.4.3 Indexing

In addition to the primary in-memory columnar store, SAP HANA
also implements an in-memory row store based on P*Time [28]. Within
P*Time, an optimized protocol called ‘optimistic latch free index access
protocol’ (OLFIT) [27], is used to obtain good indexing performance
and scalability in multi-core environments. The OLFIT protocol ad-
dresses significant disadvantages of traditional index concurrency con-
trol schemes in multi-core environments where frequent latching leads
to a high number of cache coherence misses just because of concurrency
control–even if there are only read operations and no updates are made.
This was identified as a major factor limiting the scalability of index
performance for in-memory multiprocessor systems. The OLFIT proto-
col addresses this problem with an optimistic control scheme that does
not require setting latches for read operations. Instead only write oper-
ations set a latch, and only for those nodes that are actually changed.
In addition, a version number is increased whenever a node is changed.
Read operations use an optimistic approach to ensure consistency: they
read the latch and if it is not set, they proceed and read the version
number before and after the read operation. If the latch was set or if
the version number was changed while reading, the read operation is
repeated. With this optimization read performance is almost as high as

96 Systems

without concurrency overhead and the overall index performance scales
almost linearly with the number of processor cores.

4.4.4 Concurrency control

SAP HANA uses row level multi version concurrency control (MVCC)
(see [155] for a textbook example) to ensure consistent read opera-
tions. MVCC is implemented by all SAP HANA data stores and is used
for supporting both transaction level snapshot isolation and statement
level snapshot isolation.

Consistent View and Transaction Timestamps For each database
reader (a transaction or a statement, depending upon the desired iso-
lation level) SAP HANA provides a consistent view of the database,
which contains only the data the reader is allowed to see. To deter-
mine what data can be seen by a given reader, visibility information
is stored with each data version. For committed versions, the visibility
information is based on transaction timestamps. To avoid having to
update the timestamp on a large number of data versions committed
by a transaction, a level of indirection is used in which all versions com-
mitted by a transaction point to a common transaction block, which
contains the commit timestamp. This indirection is subsequently and
asynchronously removed by lazily updating the data versions info with
the commit timestamp. Not yet committed versions are tagged with an
identifier of the transaction that created them.

The transaction timestamps (TS) used for MVCC are integers from
a commit counter, which is maintained by the transaction manager and
incremented after each successful commit. The consistent view for a
reader has an associated timestamp (CVTS) which is the value of the
commit counter at the time the reader started. Several readers may
have the same CVTS if no transaction was committed in between. For
a given consistent view all data versions committed after the consistent
view timestamp are not visible. Only those not yet committed versions
are visible that were created by the reader’s own transaction.

Consolidation of Data Versions. Old data versions no longer
visible in any potential consistent view are periodically consolidated to

4.4. SAP HANA 97

free up memory. Version consolidation is done asynchronously as a regu-
lar scheduled background job, when triggered by specific system events,
or manually by an administrator. The transaction manager maintains
a system value MinReadTS, the timestamp of the oldest consistent
view that must be kept because there is at least one active reader that
needs to access it. Whenever a transaction ends, the transaction man-
ager checks whether this was the last transaction with a consistent view
timestamp equal to MinReadTS. If this is the case, MinReadTS can be
advanced to the next larger CVTS of an active transaction. Any old
data version may be removed if it has a committed successor version
that is visible in the consistent view corresponding to MinReadTS, i.e.,
if the successor version has a timestamp TS ≤ MinReadTS.

Write Conflicts. MVCC ensures consistent read operations but
does not prevent concurrent write operations on the same data version
which can cause associated inconsistencies such as dirty write and lost
updates. To prevent concurrent write operations on the same data ver-
sions, SAP HANA takes exclusive row-level write locks for each write
access request. The transaction manager performs deadlock detection
and avoidance by aborting victim transactions. With snapshot isola-
tion, lost updates would occur if transactions were allowed to create
new versions of records visible to them for which new versions were
committed in the meanwhile by other transactions. SAP HANA de-
tects such write conflicts and aborts the offending operations with a
serialization error.

Snapshot Isolation and Uniqueness Constraints. SAP HANA
supports uniqueness constraints (for primary key columns and other
columns). Checks for violation of uniqueness constraints are not made
against the consistent view seen by the write operation. Instead the
checks include all existing versions. If a write operation creates a
uniqueness conflict with versions committed since creation of the con-
sistent view, the execution of the write statement will be aborted. If
there is a constraint violation conflict with an uncommitted version,
execution will block until the other transaction is finished or until the
waiting write operation is aborted with a timeout.

98 Systems

4.4.5 Query Processing

The performance of the full table scan is critical for the overall query
performance of a column-store database system. Compressing the un-
derlying column data format is both an advantage and a challenge,
because it reduces the data volume involved in a scan on the one hand
but introduces the need for decompression during the scan on the other
hand. As all columns in SAP HANA are dictionary encoded and the
references to the dictionary entries are bit compressed, decompression
speed during scan is a critical task. Vectorizing the scan with vector
engines (available for example in all standard Intel processors) allows
to execute SIMD (single instructions multiple data) instructions for
significantly accelerating the performance. Intel’s AVX2 implements
vector-vector shift and gather instructions, which play a fundamental
role for the performance of SAP HANA’s core scan primitives. Since
these SIMD instructions work on vectors of machine words such as 8,
16, 32, or 64bit integers, some efficiently implemented unpacking logic
is requiring to de-compress column values [158].

The following vectorized steps are performed on 4 to 256 code words
in parallel (with 256 bit registers): In a first step, the data is brought
into a format that the scan predicate can work on. In the most general
case, this means shuffling all bytes containing bits of the code word
into the same machine word, cleaning the upper (unused) bits of the
machine word, i.e., setting them to zero, aligning the code word to ma-
chine word boundaries, i.e. shifting the machine word to the right, and
finally storing the result into a buffer. In a second step, the predicate
is evaluated. For the range scan, this consists of two comparisons and
can be done directly after cleaning by shifting the range once before the
scan. Vectorized predicates can be evaluated directly after the align-
ment to machine word boundaries, while evaluation of other predicates
is delayed until a buffer is filled in order to amortize virtual function
calls etc. In a third step, the result of the predicate evaluation has to be
extracted, be it a bit or an index indicating a match or the unpacked
code words in case of an arbitrary predicate. The last step is to store the
extracted result. In order to fully benefit from SIMD instructions, many
non-trivial optimizations have to be applied to this scheme. Skipping

4.4. SAP HANA 99

the alignment for range predicates and tightly interweaving unpacking
and evaluation of vectorized predicates are two important optimiza-
tions. Additionally, we separately optimize every single bit case, i.e.,
we have a different implementation of the above scheme for every value
of b. In some bit cases, a single special SIMD instruction can perform
the clean and align step at the same time, while in others, shuffle alone
needs three instructions.

Grouping with aggregation is one of the most expensive rela-
tional database operators. The dominant cost of aggregation is–as with
most relational operators–the movement of the data. In an in-memory
database system, the challenge is to design an aggregation operator
such that it uses the CPU caches efficiently to overcome the bottleneck
to the significantly slower main memory. Traditionally, there are two
opposite approaches to implement this operator: hashing and sorting.
Hash aggregation inserts the input rows into a hash table, using the
grouping attributes as key and aggregating the remaining attributes in-
place. Sort aggregation first sorts the rows by the grouping attributes
and then aggregates the consecutive rows of each group. The consensus
is that a hash-based aggregation is better if the number of groups is
small enough such that the output fits into the cache; the sort-based
variant is more efficient if the number of groups is very large. SAP
HANA provides a single aggregation operator combining the advan-
tages of both worlds [108]. The overall mechanism is based on sorting
by hash values allowing to combine hashing for early aggregation and
state-of-the-art integer sorting routines depending on the locality of
the data. We tune both the hashing and the sorting routine to mod-
ern hardware and devise a simple, yet effective criterion of locality to
switch between the two.

Similarly to scan and aggregation operators, SAP HANA provides
a rich set of further relational as well as non-relational operators, which
are highly tuned for modern hardware, especially to leverage the cache
hierarchies of modern CPU as well as consider NUMA architectures of
large systems.

100 Systems

4.4.6 Durability and Recovery

Transaction durability in SAP HANA is realized using logging coupled
with shadow paging. Any changes made by the transaction are logically
logged into a write-ahead log. SAP HANA also writes out savepoints
(a.k.a. checkpoints or snapshots in other database systems) at regu-
lar intervals. Thus, in order to recover a certain database state, the
contents of the last savepoint plus the log since the last savepoint is
sufficient. Although this concept is similar to traditional database sys-
tems, the complete persistency layer was developed from scratch and
designed for distributed in-memory database requirements. The follow-
ing examples highlight specific design decisions:

• No traditional buffer cache: SAP HANA employs a generic re-
source container, which manages loaded in-memory objects (such
as data columns and dictionaries or even individual data pages) in
a unified way. This resource container cooperates with the mem-
ory management subsystem, such that memory pressure will not
result in paging, but rather releasing (hopefully) unneeded re-
sources based on a weighted LRU algorithm.

• Variable page size: Instead of supporting just a single page size,
the subsystem supports several page sizes (powers of 4, from 4KB
to 16MB) to optimally use I/O bandwidth for consecutive ranges
of columnar data, while at the same time keeping persistent space
fragmentation very low. For example, a 20 MB object can be
composed of one 16MB and one 4MB page. This also helps to keep
the memory space needed for logical-to-physical block translation
table minimal.

• Shared nothing: The persistent state of individual services in
distributed settings is completely separated. Also savepoints and
logs of individual services run unsynchronized, with the exception
of consistent snapshot.

• Consistent changes: Operations on persistent state are
grouped into low-level atomic operations called consistent
changes. Consistent changes consist of writing REDO log entries,

4.5. Other Systems 101

writing UNDO/CLEANUP entries, and modifying the persistent
state, which may be an actual modification on pages loaded in
resource container, or just an intent of modification by marking
some pages dirty and letting materialization callback material-
ize them on savepoint. Consistent changes are guaranteed to be
either persisted in the savepoint in their entirety, or not at all,
i.e. the higher-level implementation just needs to provide REDO
action to repeat any action executed online to create identical
new logical state. UNDO/CLEANUP actions are executed auto-
matically by the persistency subsystem either during transaction
rollback (to undo the action) or during asynchronous garbage
collection (to finally delete old states after any potential MVCC-
based readers are gone).

Aside from failure recovery, the SAP HANA persistency subsystem
is the basis for several advanced features, such as consistent on-line
backup based on coordinated consistent snapshot across services (full
and delta). This implies that the distributed database is recoverable
from pure data backup even if the log is lost. The subsystems also
provide point-in-time recovery as well as a high-availability solution
with initial data shipping and continuous log shipping (near real-time
takeover). The feature of efficient secure data deletion by coupling page
encryption with targeted savepoints is another example of features re-
quired in enterprise database solutions.

4.5 Other Systems

The current main-memory database landscape by no means consists of
the four primary systems we surveyed in previous chapters. The field is
rich with both commercial and academic systems that feature novel and
interesting architectures and techniques that achieve high performance
on main-memory data. This section summarizes these systems.

4.5.1 solidDB

solidDB is a high performance database system originally developed
by Solid Information Technology, a privately held company founded

102 Systems

in 1992 in Helsinki Finland. solidDB was bought by IBM in 2007 and
was subsequently sold to UNICOM global in 2014. The database engine
continues to be developed and is used mainly as an embedded database
in telecom and network software deployments.

Architecturally, solidDB is a hybrid database that consists of both a
disk-based and main-memory optimized engine [93], where a single SQL
statement may access data from either engine (this summary focuses on
the main-memory engine). Like other main-memory engines, solidDB
does not use page-oriented storage to avoid indirection overhead when
accessing records.

solidDB indexes data using a Vtrie (for variable-length trie), a vari-
ant of the trie data structure that indexes leaf nodes structured simi-
larly to B+-tree leaf nodes whose default size is a few cache lines. The
Vtrie allows readers to proceed uncontested and latch-free by version-
ing index nodes, while writers use two-level locking to avoid conflict.

For concurrency control, solidDB uses pessimistic locking [139]; this
is different than most current systems. For durability, solidDB uses
snapshot-consistent checkpointing [91] to recover to a consistent state.
If desired, users can disable transactional logging altogether to recover
from the last durable snapshot. solidDB also provides high-availability
using a hot standby approach that replicates the redo log.

4.5.2 Oracle TimesTen

TimesTen began as a research project at HP Labs named “Smallbase”
and was later spun off into a separate company that was acquired by
Oracle. TimesTen continues to be developed and serves as one of Ora-
cle’s high-performance main-memory database solution. This overview
covers the current features of Oracle TimesTen as of 2013 [74].

TimesTen is a memory-optimized database engine that can serve
many purposes, such as a standalone engine, a transactional cache on
top of an Oracle RDBMS, as well as an in-memory repository for inter-
active BI workloads. The in-memory portion consists of the in-memory
database area, a temporary area for run-time allocations, and the in-
memory log buffers. Database storage avoids page indirection overhead
and uses direct pointers to records. TimesTen also implements several

4.5. Other Systems 103

indexing methods including hash, bitmap, and range indexes supported
by T-trees [79]. TimesTen also supports columnar compression using
dictionary-based encoding. Users can specify to compress columns in-
dividually or together in groups.

An interesting feature of TimesTen is its deployment flexibility.
While it can be used as a database of record, it is easily deployed
as a cache on top of a disk-based Oracle RDBMS. Users can specify
that a set of TimesTen tables act as caches against a set of correspond-
ing tables in an Oracle database. Users can also specify how caches
are loaded (pre-loaded or dynamically) and synchronized (read-only or
updatable).

For transactional concurrency control, TimesTen uses a lockless
multi-versioning approach to enable read-write concurrency. It uses
row-level locking to handle write-write concurrency. Write-ahead log-
ging along with period checkpointing provide durability in TimesTen.
For performance, TimesTen offers a delayed-durability mode that ac-
knowledges a transaction commit after writing a commit record to an
in-memory log buffer (without waiting for durability of the commit
record). In this mode, log flushes occur every 100 msec, which defines
an upper bound on possible data loss.

4.5.3 Altibase

Altibase is an in-memory database provider based in South Korea that
was founded in 1999. The company has a large customer base in the
Asian market spanning telecommunications, financial, and manufac-
turing companies. HDB is Altibase’s hybrid database system that con-
sists of an engine optimized for memory-resident data and a disk-based
engine that resembles a traditional RDBMS architecture [11], where
transactions can span both engines. The rest of this section summa-
rizes the features of the main-memory engine.

Altibase stores records on pages, where a memory-optimized ta-
ble consists of one or more pages in contiguous memory. It seems Al-
tibase uses a page-based organization for two reasons: checkpointing
(checkpoints are written at page granularity) and compatibility with
the disk-based engine. The engine supports several index types, includ-

104 Systems

ing hash indexes, range indexes, and spatial indexes. Indexes are not
stored in page format nor made durable and are rebuilt from scratch
during recovery [11].

To support transactions, the Altibase in-memory engine uses a
multi-version concurrency control method that creates a new version
on each update (deletes create a tombstone). Each record points to its
newest version (null for the most up-to-date record) forming a version
chain. Durability is provided through the use of write-ahead-logging
and fuzzy checkpointing. Altibase uses a page latch when copying page
state to the transaction log buffer, but implements a latch-free check-
pointing process when writing page data to the checkpoint file [11].

4.5.4 MemSQL

MemSQL [2, 136] is a hybrid database aimed at performing both trans-
actions and analytics. Architecturally, MemSQL is designed to scale out
on commodity hardware. The engine is organized into two tiers: (1) ag-
gregator nodes interface with the client and perform query routing,
parsing, and optimization while (2) leaf nodes provide the in-memory
storage and query processing functionality. Internally, MemSQL avoids
page-based indirection and uses lock-free skiplists to index data that
contain direct memory pointers to records. MemSQL provides dura-
bility by flushing a redo-only transaction log. Like Hekaton, MemSQL
uses the log to periodically create full snapshots of the database. The
database recovers using the last valid checkpoint and is made consistent
by replaying the redo-only transaction log [100].

4.5.5 Silo

Silo [151] is a high-performance main-memory database built atop the
Masstree [97]. Silo supports transactions in the form of stored pro-
cedures. Architecturally, a Silo table consists of a set of in-memory
records indexed on a primary key, along with any number of secondary
indexes (possibly none). Indexes store direct record pointers, there is
no page-based indirection.

Silo is designed to scale on large multi-core machines. The key to
Silo’s performance and scalability is that it reduces writes to “hotspots”

4.5. Other Systems 105

in shared memory. Instead of assigning a transaction a unique times-
tamp (one example of a hotspot requiring an atomic fetch-and-add for
every transaction), Silo uses an epoch-based approach where all trans-
actions read a global epoch number E that increments every so often
(40 ms by default). E occupies the high-order bits of each transactions
id and defines the serial order of transactions.

Silo provides serializable transactions as follows. Transactions track
their read sets and buffer their write sets. When committing, a trans-
action acquires all record locks in its write set (aborting if it cannot),
generates its id by reading the current global epoch, validates its read
set (aborting if validation fails), and finally installs its write set along
with its transaction id and releasing the write locks. Phantom protec-
tion is provided by versioning index leaf nodes. During validation a
transaction checks the leaf version(s) it read against the current ver-
sion(s) in the index and aborts if there are discrepancies.

Silo exploits multi-core parallelism throughout its durability and
recovery design [159]. Silo performs redo-only logging in parallel an
multiple disks, ensuring that updates for an epoch are durable be-
fore updates from epochs with larger values. Silo performs database
checkpoints in parallel by cooperatively scheduling checkpoint worker
threads. Recovery is parallelized by replaying checkpoint files in paral-
lel to rebuild in-memory state, followed by parallel log replay to bring
the database to a consistent state.

5
Active Research and Future Directions

In the previous sections, we surveyed the architecture and implemen-
tation issues of modern main-memory database systems. Much of the
technology we surveyed is either shipping in production systems, or is a
mature research prototype that serves as the basis for ongoing research.

In this section, we summarize active areas of research in main-
memory database systems that is more speculative in nature. We first
cover "cold data management", which looks at how to manage records
that are rarely accessed and might not need to remain in memory.
Second, we cover the use of transactional memory, and how it might
be used to ease the implementation of highly-concurrent main-memory
system. We then summarize the use of non-volatile RAM in database
systems: a more speculative research area exploring at how to adapt
systems to efficiently use a new high performance, byte-addressable
storage medium.

5.1 Cold Data Management

In a majority of OLTP workloads, some records are "hot" and accessed
frequently (the working set), while others are "cold" and accessed infre-

106

5.1. Cold Data Management 107

quently. Good performance of main-memory database systems depends
on the hot records residing in memory. Cold records, on the other hand,
may not need to remain in memory. An active area of research is how
to manage "cold" data in main-memory systems. The goal of this work
is to efficiently identify and move cold records off the system’s critical
hot path. Research in this area is motivated by two key observations:

1. Skew in OLTP workloads. Real-life transactional workloads typ-
ically exhibit considerable access skew. For example, package
tracking workloads for companies such as UPS or FedEx exhibit
time-correlated skew. Records for a new package are frequently
updated until delivery, then used for analysis for some time, and
after that accessed again only on rare occasions. Another exam-
ple is the natural skew found on large e-commerce sites such as
Amazon, where some items are much more popular than others.
Such preferences may change over time but typically not very
rapidly.

2. Economics. It is significantly cheaper to store cold data on sec-
ondary storage rather than in DRAM. High-density server class
DRAM comes at a large premium, making a medium like flash
attractive for cold data. In fact, calculating the 5-minute rule
proposed by Gray and Putzolu [56] using current hardware prices
reveals that a 200 byte record should remain in memory if it is
accessed at least every 60 minutes. This time window decreases
as record size increases; a more complete analysis can be found
in [88].

In the rest of this section we summarize three techniques for man-
aging cold in modern main-memory systems. In general, work on cold-
data management is still in the research phase; we do not know of a
full scale implementation in production.

HyPeR Compression

HyPer’s cold-data management scheme [48] separates cold transac-
tional data from the hot data and compresses it in a read-optimized

108 Active Research and Future Directions

format for OLAP queries. This technique performs cold/hot data clas-
sification at the virtual memory page level, which is the granularity of
its data organization. Classification piggybacks on the CPUs memory
management unit setting of dirty page flags used for page frame reloca-
tion. HyPer pins pages in memory, so it is able to read and reset dirty
flags to help classify cold and hot pages. After classification, chunks of
cold records are compressed to reduce memory consumption. The cold
chunks are stored on huge virtual memory pages and made immutable
to allow for use in OLAP snapshots.

Data Blocks. Subsequent work in HyPer on cold data manage-
ment produced Data Blocks: self-contained containers that store one
or more attribute chunks in a byte-addressable compressed format [75].
The goal is to conserve memory while retaining the high OLTP and
OLAP performance. By maintaining a flat structure without point-
ers, Data Blocks are also suitable for eviction to secondary storage,
thereby reducing the DRAM footprint of HyPer. A Data Block con-
tains all data required to reconstruct the stored attributes and our
novel light-weight Positional SMA (PSMA) index structures, but no
metadata such as schema information, as replicating this in each block
would waste space. Although orthogonal to this work, Data Blocks
have further been designed with upcoming secondary storage solutions
in mind, including non-volatile RAM (NVRAM) and byte-addressable
flash storage. Data stored in Data Blocks on such storage devices can
directly be addressed and read without bringing the whole Data Block
into DRAM.

Hekaton Siberia

Hekaton’s Siberia approach splits the database into hot and cold stor-
age [42]. This split is beneath the cursor interface of Hekaton, hiding
the physical location of a record from higher software layers. Siberia
employs a novel cold data classification techniques that logs a sam-
ple of record accesses, then analyzes the log in parallel to find the hot
and cold records [88]. Siberia uses small approximate, but conservative,
point and range filters [10] over the cold store. To prevent unnecessary
accesses to cold storage during processing. Siberia also dovetails with

5.1. Cold Data Management 109

Hekaton’s optimistic multi-version concurrency control scheme and is
capable performing transactions that span both hot and cold stores, as
well as migrating data to and from cold storage while the database is
online and active.

Anti-Caching

Anti-caching [34] is a memory-oriented DBMS design built into H-Store
that allows the system to manage databases that are larger than the
amount of memory available without incurring the performance penalty
of a disk-oriented system. When the amount of in-memory data exceeds
an administrator-defined threshold, the DBMS moves data to disk to
free up space for new data. The DBMS maintains in-memory “tomb-
stones” for each evicted tuple. When a running transaction attempts
to access an evicted tuple through its tombstone, the DBMS aborts
that transaction and fetches that it needs from the anti-cache without
blocking other transactions. Once the data that the transaction needs
is moved back into memory, the transaction is restarted.

At runtime, H-Store monitors the amount of main memory used by
the database. When the size of the database relative to the amount
of available memory on the node exceeds some administrator-defined
threshold, the DBMS “evicts” cold data to the anti-cache in order to
make space for new data. To do this, the DBMS constructs a fixed-
size block that contains the least recently used (LRU) tuples from
the database and writes that block to the anti-cache. It then updates
a memory-resident catalog that keeps track of every tuple that was
evicted. When a transaction accesses one of these evicted tuples, H-
Store switches that transaction into a “pre-pass” mode to learn about
all of the tuples that the transaction needs. After this pre-pass is com-
plete, H-Store then aborts that transaction (rolling back any changes
that it may have made) and holds it while the system retrieves the
tuples in the background. Once the data has been merged back into
the in-memory tables, the transaction is released and restarted.

Anti-caching classifies cold data using the LRU replacement policy
on a per-table basis. Statistics to identify LRU recency is stored in the
in-memory tuple header. Anti-caching uses a block table for storing cold

110 Active Research and Future Directions

records, where blocks are similar in spirit to disk pages. An in-memory
eviction table is used to map evicted tuples to the appropriate block on
secondary storage. Anti-caching uses a special single-partition transac-
tion to serialize and migrate cold tuples to block storage. Transactions
that touch a cold record are aborted and restarted; before restarting
the transaction goes into a pre-pass phase that tries to identify all cold
records that will be accessed and migrates these records into memory.
Once the pre-pass phase is complete the transaction restarts.

5.2 Transactional Memory

Transactional memory (TM) allows for atomic execution of arbitrary
loads and stores within a critical section, relieving the programmer
from thinking about fine-grained thread-level concurrency. Transac-
tional memory research started in the late seventies [94] with the first
practical implementation proposed by Herlihy and Moss in the early
nineties [64]. However, use of TM to simplify the implementation of
high performance database systems never took hold; this was primar-
ily due to the significant performance hit due to transactions being
implemented in software.

The recent release of hardware transactional memory (HTM) by
Intel and IBM has brought about a resurgence in research exploring
databases and transactional memory. While details differ, the basic idea
is to piggyback the HTM implementation on existing CPU features.
For instance, CPU caches are used to store transaction buffers and
provide isolation. Also, the CPU cache coherency protocol can be used
to detect transaction conflicts. All of this leads to a very low-overhead
transactional memory implementation.

While HTM is efficient, it does have limitations in its current
form that have been experimentally verified in a number of recent
works [71, 86, 95]. A primary constraint is that the read and write
set of a transaction must fit in cache in order for it to be executed.
Thus many properties may limit a transaction’s size including: cache
capacity, cache set associativity, hyper-threading, TLB capacity and
others. Another constraint is on transaction duration. Many hardware

5.2. Transactional Memory 111

events, such as interrupts, context switches or page faults, will abort a
transaction. Furthermore, conflict detection is usually done at the gran-
ularity of a cache line. This may lead to cases of false sharing where
aborts occur due to threads accessing and modifying separate items on
the same cache line. Given these constraints, a current open question
is: how does HTM fit reliably into high performance database systems?
The rest of this section summarizes recent research in this area.

5.2.1 Increasing Concurrency with HTM

The HyPeR team explored how to exploit HTM to achieve concurrency
within main-memory database systems [86]. Their approach achieves
thread-level parallelism by breaking a transaction into individual record
accesses (read or update), where each access executes within a hard-
ware transaction. This approach plays nicely with HTM limitations
since single-record operations are short-lived and fairly predictable. To
implement transactions, these HTM accesses are "glued together" using
timestamp ordering concurrency control.

DBX [153] is a prototype OLTP system built to evaluate HTM as
a general-purpose solution to implementing transactions. DBX uses an
optimistic concurrency control approach that tracks its read set and
buffers its writes. Before commit, transactions validate the read set
and abort if any concurrent transaction has modified a record in the
set. To apply writes, DBX uses a single HTM transaction to install
its updates, thus synchronizing among concurrently executing threads.
Unlike HyPeR, DBX attempts to batch all record updates within a
single HTM transaction.

5.2.2 HTM and Indexing

Karnagel et al. explored using HTM lock elision as a way to improve
thread-level concurrency in a B+-tree and in SAP Hana’s delta storage
index [71]. Programming with lock elision is similar to programming
with locks (latches), except lock elision first attempts to execute a
critical section transactionally, and only if the transaction aborts will
it execute the critical section by acquiring the lock. The benefit of lock
elision is that it provides optimistic concurrency for programs that use

112 Active Research and Future Directions

simple coarse grain locks. This work found that using HTM with a
global elided lock leads to excellent performance for databases with
small fixed-size keys but that care must be taken within the index
implementation (in the case of the delta index) to avoid spurious HTM
aborts due to false cache line sharing.

Makreshanski et al. explore the interplay between a high perfor-
mance lock-free B+-tree and an HTM-based B+-tree that achieve par-
allelism through use of a global elided lock [95]. The work makes three
main observations. First, HTM is an unattractive general-purpose so-
lution for achieving concurrency within an index, since single read-only
operations can abort when larger key and page sizes are used within an
index (aborts due to transaction size and associativity conflict). Fur-
thermore, fine-grained concurrency techniques like lock-crabbing can-
not be implemented with HTM since a cacheline cannot be removed
from a transaction. Second, there are fundamental performance ad-
vantages to a lock-free design since it never abort readers, whereas an
HTM-based approach can abort readers on data conflict. Third, using
HTM to implement a high performance multi-word compare-and-swap
can greatly decrease the complexity of lock-free index design at a cost
of roughly 10-15% overhead.

Recent work on DrTM explores building a scale-out transactional
key-value store using HTM and RDMA [154]. The challenge in building
DrTM involves avoiding the limited working set of HTM transactions as
well as avoiding RDMA calls within an HTM transaction, which causes
an automatic abort due to an interrupt. To avoid long transactions,
DrTM uses transaction chopping to limit transaction size. To avoid
RDMA calls within an HTM transaction, DrTM performs two-phase
locking to "lock" remote records, read them into a local cache, update
them, and write back local changes after commit.

5.3 Non-Volatile RAM

Non-volatile RAM (or NVRAM) refers to a broad class of technologies
under development that promise a blend of the best properties from
DRAM and hard disks, such as high performance, byte addressability,

5.3. Non-Volatile RAM 113

persistence after power failure, and energy efficiency. While there are
a number of proposals for implementing NVRAM, including phase-
change memory (PCM) [128], memristors [144], and STT-MRAM [40],
vendors hope to hit a price/performance target below DRAM (in both
price and performance) and above Flash/SSD, giving NVRAM a viable
position in the storage hierarchy.

While NVRAM is not yet shipping1, there has been speculative
research looking at how to adapt database systems to use NVRAM
effectively. The rest of this section classifies and summarizes this work.

5.3.1 Logging

One primary area of NVRAM research is in the context of "traditional"
ARIES-style recovery techniques that explore placing the recovery log
on NVRAM. Pelley et al. explored a group commit approach (simi-
lar to that introduced by Dewitt et al. [37]) that batches recovery log
writes in Shore-MT [121]. The goal of this work is to reduce the num-
ber of write barriers necessary to ensure correct ordering of the log on
NVRAM. Wang and Johnson [152] explore a distributed logging pro-
tocol in Shore-MT that equips each log with an NVRAM-based write
buffer. Transactions are committed once writing a commit record to
the NVRAM buffer, thereby avoiding a centralized logging bottleneck.
A main problem addressed by this work is how to guarantee persis-
tence of distributed log records given processor caches are volatile. The
solution is to use a passive group commit protocol that tracks when
all records required to ensure durability of a transaction are flushed
from CPU cache to NVRAM. Fang et al. explore a similar approach
using the solidDB log manager [45]. This work addresses the problem
of detecting partial writes and the implications on database recovery.

MARS [31] rethinks ARIES-style logging and recovery to address
the unique characteristics of NVRAM. MARS is a novel write-ahead
logging scheme that performs redo-only logging. The key feature of
MARS is the introduction of a multi-part atomic write primitive called

1Battery-backed RAM (or NVDIMM) can be considered a form of NVRAM and
is available today. However, NVDIMM will follow price/performance trends similar
to DRAM.

114 Active Research and Future Directions

an edible atomic write (or EAW). An EAW is a set of per-object redo log
entries that can be updated in place multiple times during transaction
execution. On commit, the storage hardware copies the updates to their
target locations; this copy is guaranteed to succeed in the event of a
power failure.

5.3.2 Storage

Another primary area of research involves storage and programming
models optimized for byte-addressable NVRAM. REWIND [29] is a
lightweight user-mode library for implementing arbitrary persistent
data structures in NVRAM. Users update REWIND data structures
using a transaction interface. Underneath the hood, REWIND trans-
parently manages a log of updates and manages commit and recovery
of transactions.

SOFORT [115] is a storage engine designed for a two-level hierarchy
of DRAM and NVRAM. The engine does not perform logging. It uses
multi-version concurrency control to update NVRAM directly with new
versions. The goal for SOFORT is to achieve nearly instant recovery;
since updates are persisted in NVRAM, there is no need to "rebuild" the
database from checkpoints and a recovery log. To this end, SOFORT
intelligently chooses which part of the database engine is implemented
in NVRAM as opposed to purely volatile DRAM in order to bound
recovery time.

Arulraj et al. [14] experimentally evaluate three different storage en-
gines on an Intel NVRAM hardware emulator. The storage approaches
evaluated are: in-place updates, copy-on-write, and log-structured up-
dates. This work also implements an NVRAM-optimized variant for
each approach to address CPU overhead, storage footprint, and wear-
leveling. The results from this evaluation suggest that an NVRAM-
optimized in-place update storage approach is ideal in terms of over-
head and device wear-leveling. Like SOFORT, this study observes that
updating the database directly leads to almost instantaneous restart
after a crash.

References

[1] Intel Xeon Processor E5-2699 v3 Specification Sheet. http://intel.
ly/1xx6aZz.

[2] MemSQL. http://www.memsql.com.
[3] VoltDB. http://www.voltdb.com.
[4] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-Stores

vs. Row-Stores: How Different are they Really? In Proceedings of the
ACM Conference on Management of Data, SIGMOD, pages 967–980,
2008.

[5] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari.
Efficient Optimistic Concurrency Control using Loosely Synchronized
Clocks. In Proceedings of the ACM Conference on Management of Data,
SIGMOD, pages 23–34, 1995.

[6] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency con-
trol performance modeling: Alternatives and implications. ACM Trans.
Database Syst., 12(4):609–654, 1987.

[7] Rakesh Agrawal and David J. DeWitt. Integrated Concurrency Control
and Recovery Mechanisms: Design and Performance Evaluation. ACM
Transactions on Database Systems, TODS, 10(4):529–564, 1985.

[8] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. Dbmss on a modern processor: Where does time go? VLDB,
pages 266–277, 1999.

115

http://intel.ly/1xx6aZz
http://intel.ly/1xx6aZz
http://www.memsql.com
http://www.voltdb.com

116 References

[9] M.-C. Albutiu, Alfons Kemper, and Thomas Neumann. Massively Par-
allel Sort-Merge Joins in Main Memory Multi-Core Database Systems.
Proceedings of the VLDB Endowment, PVLDB, 5(10):1064–1075, 2012.

[10] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. Adaptive
Range Filters for Cold Data: Avoiding Trips to Siberia. Proceedings of
the VLDB Endowment, PVLDB, 6(14):1714–1725, 2013.

[11] Altibase. Altibase HDB Administrator’s Manual, 5 2015.
[12] Peter M. G. Apers, Martin L. Kersten, and Hans Oerlemans. PRISMA

Database Machine: A Distributed, Main-Memory Approach. In Proceed-
ings of the International Conference on Extending Database Technology,
EDBT, pages 590–593, 1988.

[13] Peter M. G. Apers, Carel A. van den Berg, Jan Flokstra, Paul W. P. J.
Grefen, Martin L. Kersten, and Annita N. Wilschut. PRISMA/DB: A
parallel main memory relational DBMS. IEEE Transactions on Knowl-
edge and Data Engineering, TKDE, 4(6):541–554, 1992.

[14] Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database Sys-
tems. In Proceedings of the ACM Conference on Management of Data,
SIGMOD, pages 707–722, 2015.

[15] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Under-
lying Hardware. In Proceedings of the International Conference on Data
Engineering, ICDE, pages 362–373, 2013.

[16] Jerry Baulier, Philip Bohannon, S. Gogate, C. Gupta, S. Haldar,
S. Joshi, A. Khivesera, Henry F. Korth, Peter McIlroy, J. Miller, P. P. S.
Narayan, M. Nemeth, Rajeev Rastogi, S. Seshadri, Abraham Silber-
schatz, S. Sudarshan, M. Wilder, and C. Wei. DataBlitz Storage Man-
ager: Main Memory Database Performance for Critical Applications. In
Proceedings of the ACM Conference on Management of Data, SIGMOD,
pages 519–520, 1999.

[17] Philip A. Bernstein and Nathan Goodman. Timestamp-Based Algo-
rithms for Concurrency Control in Distributed Database Systems. In
Proceedings of the International Conference on Very Large Data Bases,
VLDB, pages 285–300, 1980.

[18] Philip A. Bernstein and Nathan Goodman. Concurrency Control in
Distributed Database Systems. ACM Comput. Surv., 13(2):185–221,
1981.

References 117

[19] Philip A. Bernstein and Nathan Goodman. A sophisticate’s introduc-
tion to distributed concurrency control (invited paper). In Proceed-
ings of the International Conference on Very Large Data Bases, VLDB,
pages 62–76, 1982.

[20] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987.

[21] Dina Bitton, Maria Hanrahan, and Carolyn Turbyfill. Performance of
Complex Queries in Main Memory Database Systems. In Proceedings of
the International Conference on Data Engineering, ICDE, pages 72–81,
1987.

[22] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Evaluation
of Main Memory Hash Join Algorithms for Multi-core CPUs. In Pro-
ceedings of the ACM Conference on Management of Data, SIGMOD,
pages 37–48, 2011.

[23] Philip Bohannon, Daniel F. Lieuwen, Rajeev Rastogi, Abraham Silber-
schatz, S. Seshadri, and S. Sudarshan. The Architecture of the Dalí
Main-Memory Storage Manager. Multimedia Tools Appl., 4(2):115–151,
1997.

[24] Michael J. Carey and Miron Livny. Distributed Concurrency Control
Performance: A Study of Algorithms, Distribution, and Replication.
Proceedings of the International Conference on Very Large Data Bases,
VLDB, pages 13–25, 1988.

[25] Michael J. Carey and Michael Stonebraker. The Performance of Con-
currency Control Algorithms for Database Management Systems. In
Proceedings of the International Conference on Very Large Data Bases,
VLDB, pages 107–118, 1984.

[26] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record,
39:12–27, 2011.

[27] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon.
Cache-Conscious Concurrency Control of Main-Memory Indexes on
Shared-Memory Multiprocessor Systems. In Proceedings of the Inter-
national Conference on Very Large Data Bases, VLDB, pages 181–190,
2001.

[28] Sang Kyun Cha and Changbin Song. P*TIME: Highly Scalable OLTP
DBMS for Managing Update-Intensive Stream Workload. In Proceed-
ings of the International Conference on Very Large Data Bases, VLDB,
pages 1033–1044, 2004.

118 References

[29] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas.
REWIND: Recovery Write-Ahead System for In-Memory Non-Volatile
Data-Structures. Proceedings of the VLDB Endowment, PVLDB,
8(5):497–508, 2015.

[30] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving index
performance through prefetching. In Proceedings of the ACM Confer-
ence on Management of Data, SIGMOD, pages 235–246, 2001.

[31] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven
Swanson. From ARIES to MARS: Transaction Support for Next-
Generation, Solid-State Drives. In Proceedings of the ACM Symposium
on Operating Systems Principles, SOSP, pages 197–212, 2013.

[32] James Cowling and Barbara Liskov. Granola: Low-Overhead Dis-
tributed Transaction Coordination. In Proceedings of the USENIX An-
nual Technical Conference, ATC, pages 21–34, June 2012.

[33] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a
Workload-Driven Approach to Database Replication and Partitioning.
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 3:48–57, 2010.

[34] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker,
and Stan Zdonik. Anti-caching: A New Approach to Database Man-
agement System Architecture. Proceedings of the VLDB Endowment,
PVLDB, 6(14):1942–1953, 2013.

[35] Kalen Delaney, Paul Randal, Kimberley Tripp, Conor Cunningham,
Adam Machanic, and Ben Navarez. SQL Server 2008 Internals. Mi-
crosoft, 2009.

[36] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,
Krishna B. Kumar, and M. Muralikrishna. GAMMA - A High Perfor-
mance Dataflow Database Machine. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, pages 228–237, 1986.

[37] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,
Michael Stonebraker, and David A. Wood. Implementation Techniques
for Main Memory Database Systems. SIGMOD Record, 14(2):1–8, 1984.

[38] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton:
SQL Server’s Memory-Optimized OLTP Engine. In Proceedings of the
ACM Conference on Management of Data, SIGMOD, pages 1243–1254,
2013.

References 119

[39] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast Remote Memory. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI, pages 401–414, 2014.

[40] Alexander Driskill-Smith. Latest Advances and Future Prospects of
STT-RAM. In Non-Volatile Memories Workshop, 2010.

[41] Margaret H. Eich. A Classification and Comparison of Main Mem-
ory Database Recovery Techniques. In Proceedings of the International
Conference on Data Engineering, ICDE, pages 332–339, 1987.

[42] Ahmed Eldawy, Justin Levandoski, and Per-Åke Larson. Trekking
Through Siberia: Managing Cold Data in a Memory-Optimized
Database. Proceedings of the VLDB Endowment, PVLDB, 7(11):931–
942, 2014.

[43] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multi-
version concurrency control. Proceedings of the VLDB Endowment,
PVLDB, 8(11):1190–1201, 2015.

[44] Jose M. Faleiro and Daniel J. Abadi. Latch-free Synchronization in
Database Systems: Silver Bullet or Fool’s Gold? In Proceedings of the
International Conference on Innovative Data Systems Research, CIDR,
2017.

[45] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. High Perfor-
mance Database Logging using Storage Class Memory. In Proceedings of
the International Conference on Data Engineering, ICDE, pages 1221–
1231, 2011.

[46] Peter A. Franaszek and John T. Robinson. Limitations of concurrency
in transaction processing. ACM Transactions on Database Systems,
TODS, 10(1):1–28, 1985.

[47] Craig Freedman, Erik Ismert, and Per-Åke Larson. Compilation in
the Microsoft SQL Server Hekaton Engine. IEEE Data Engineering
Bulletin, 37(1):22–30, 2014.

[48] Florian Funke, Alfons Kemper, and Thomas Neumann. Compacting
Transactional Data in Hybrid OLTP & OLAP Databases. Proceedings
of the VLDB Endowment, PVLDB, 5(11):1424–1435, 2012.

[49] Hector Garcia-Molina and Kenneth Salem. Main Memory Database
Systems: An Overview. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 4(6):509–516, 1992.

[50] Dieter Gawlick and David Kinkade. Varieties of Concurrency Control in
IMS/VS Fast Path. IEEE Data Engineering Bulletin, 8(2):3–10, 1985.

120 References

[51] Shahram Ghandeharizadeh, David J. DeWitt, and Waheed Qureshi.
A Performance Analysis of Alternative Multi-Attribute Declustering
Strategies. Proceedings of the ACM Conference on Management of
Data, SIGMOD, 21(2):29–38, 1992.

[52] Vibby Gottemukkala and Tobin J. Lehman. Locking and Latching in a
Memory-Resident Database System. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, pages 533–544, 1992.

[53] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[54] Goetz Graefe and William J. McKenna. The Volcano Optimizer Gen-
erator: Extensibility and Efficient Search. In Proceedings of the Inter-
national Conference on Data Engineering, ICDE, pages 209–218, 1993.

[55] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L.
Traiger. Granularity of Locks in a Large Shared Data Base. In Proceed-
ings of the International Conference on Very Large Data Bases, VLDB,
pages 428–451, 1975.

[56] Jim Gray and Gianfranco R. Putzolu. The 5 Minute Rule for Trading
Memory for Disk Accesses and The 10 Byte Rule for Trading Memory
for CPU Time. In Proceedings of the ACM Conference on Management
of Data, SIGMOD, pages 395–398, 1987.

[57] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[58] Le Gruenwald and Margaret H. Eich. MMDB Reload Algorithms. In
Proceedings of the ACM Conference on Management of Data, SIGMOD,
pages 397–405, 1991.

[59] Theo Haerder and Andreas Reuter. Principles of Transaction-Oriented
Database Recovery. ACM Computing Surveys, 15(4):287–317, 1983.

[60] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. OLTP through the looking glass, and what we found there.
In SIGMOD, pages 981–992, 2008.

[61] Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil Garrett,
and Andreas Reuter. Group Commit Timers and High Volume Trans-
action Systems. In Proceedings of the International Workshop on High
Performance Transaction Systems, HPTS, pages 301–329, 1989.

[62] Joseph M. Hellerstein and Michael Stonebraker. Readings in Database
Systems. chapter Transaction Management, pages 238–243. 4th edition,
1998.

References 121

[63] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamil-
ton. Architecture of a Database System. Foundations and Trends in
Databases, 1(2):141–259, 2007.

[64] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. In Proceedings of the
International Symposium on Computer Architecture, ISCA, pages 289–
300, 1993.

[65] M. Heytens, S. Listgarten, M-A. Neimat, and K. Wilkinson. Smallbase:
A main-memory dbms for high-performance applications. Technical
report, Hewlett-Packard Laboratories, 1995.

[66] Svein-Olaf Hvasshovd, Øystein Torbjørnsen, Svein Erik Bratsberg, and
Per Holager. The ClustRa Telecom Database: High Availability, High
Throughput, and Real-Time Response. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, VLDB, pages 469–477,
1995.

[67] H. V. Jagadish, Daniel F. Lieuwen, Rajeev Rastogi, Abraham Silber-
schatz, and S. Sudarshan. Dalí: A High Performance Main Memory
Storage Manager. In Proceedings of the International Conference on
Very Large Data Bases, VLDB, pages 48–59, 1994.

[68] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,
and Anastasia Ailamaki. Aether: A Scalable Approach to Logging. Pro-
ceedings of the VLDB Endowment, PVLDB, 3(1-2):681–692, 2010.

[69] J. R. Jordan, J. Banerjee, and R. B. Batman. Precision Locks. In
Proceedings of the ACM Conference on Management of Data, SIGMOD,
pages 143–147, 1981.

[70] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi.
H-Store: A High-Performance, Distributed Main Memory Transaction
Processing System. Proceedings of the VLDB Endowment, PVLDB,
1(2):1496–1499, 2008.

[71] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas
Legler, Benjamin Schlegel, and Wolfgang Lehne. Improving In-Memory
Database Index Performance with Intel Transactional Synchronization
Extensions. In Proceedings of the IEEE Symposium on High Perfor-
mance Computer Architecture, HPCA, pages 476–487, 2014.

122 References

[72] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots.
In Proceedings of the International Conference on Data Engineering,
ICDE, pages 195–206, 2011.

[73] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. Generating
Code for Holistic Query Evaluation. In Proceedings of the International
Conference on Data Engineering, ICDE, pages 613–624, 2010.

[74] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. Oracle
TimesTen: An In-Memory Database for Enterprise Applications. IEEE
Data Engineering Bulletin, 36(2):6–13, 2013.

[75] Harald Land, Tobias Mühlbauer, Florian Funke, Peter Boncz, Thomas
Neumann, and Alfons Kemper. Data Blocks: Hybrid OLTP and OLAP
on Compressed Storage using both Vectorization and Compilation. In
Proceedings of the ACM Conference on Management of Data, SIGMOD,
pages 311–326, 2016.

[76] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann,
and Alfons Kemper. Massively Parallel NUMA-aware Hash Joins. In
Proceedings of the International Workshop on In-Memory Data Man-
agement, IMDM, 2013.

[77] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jig-
nesh M. Patel, and Mike Zwilling. High-Performance Concurrency Con-
trol Mechanisms for Main-Memory Databases. Proceedings of the VLDB
Endowment, PVLDB, 5(4):298–309, 2011.

[78] Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal
Sikka, Hasso Plattner, Jens Krüger, and Martin Grund. High-
Performance Transaction Processing in SAP HANA. IEEE Data Engi-
neering Bulletin, 36(2):28–33, 2013.

[79] Tobin J. Lehman and Michael J. Carey. A Study of Index Structures
for Main Memory Database Management Systems. In Proceedings of
the International Conference on Very Large Data Bases, VLDB, pages
294–303, 1986.

[80] Tobin J. Lehman and Michael J. Carey. Query Processing in Main
Memory Database Management Systems. In Proceedings of the ACM
Conference on Management of Data, SIGMOD, pages 239–250, 1986.

[81] Tobin J. Lehman and Michael J. Carey. A Recovery Algorithm for a
High-Performance Memory-Resident Database System. Proceedings of
the ACM Conference on Management of Data, SIGMOD, pages 104–
117, 1987.

References 123

[82] Tobin J. Lehman, Eugene J. Shekita, and Luis-Felipe Cabrera. An
Evaluation of Starburst’s Memory Resident Storage Component. IEEE
Transactions on Knowledge and Data Engineering, TKDE, 4(6):555–
566, 1992.

[83] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.
Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Frame-
work for the Many-core Age. In Proceedings of the ACM Conference on
Management of Data, SIGMOD, pages 743–754, 2014.

[84] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. How Good Are Query Optimizers,
Really? Proceedings of the VLDB Endowment, PVLDB, 9(3):204–215,
2015.

[85] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive
Radix Tree: ARTful Indexing for Main-Memory Databases. In Pro-
ceedings of the International Conference on Data Engineering (ICDE),
2013.

[86] Viktor Leis, Alfons Kemper, and Thomas Neumann. Exploiting Hard-
ware Transactional Memory in Main-Memory Databases. In Proceed-
ings of the International Conference on Data Engineering, ICDE, pages
580–591, 2014.

[87] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neu-
mann. Efficient Processing of Window Functions in Analytical SQL
Queries. Proceedings of the VLDB Endowment, PVLDB, 8(10):1058–
1069, 2015.

[88] Justin Levandoski, Per-Åke Larson, and Radu Stoica. Identifying Hot
and Cold Data in Main-Memory Databases. In Proceedings of the In-
ternational Conference on Data Engineering, ICDE, pages 26–37, 2013.

[89] Justin Levandoski, David B. Lomet, and Sudipta Sengupta. The Bw-
Tree: A B-tree for New Hardware Platforms. In Proceedings of the
International Conference on Data Engineering, ICDE, pages 302–313,
2013.

[90] Kai Li and Jeffrey F. Naughton. Multiprocessor Main Memory Trans-
action Processing. Proceedings of the International Symposium on
Databases in Parallel and Distributed Systems, DPDS, pages 177–187,
1988.

[91] Antti-Pekka Liedes and Antoni Wolski. SIREN: A Memory-Conserving,
Snapshot-Consistent Checkpoint Algorithm for in-Memory Databases.
In Proceedings of the International Conference on Data Engineering,
ICDE, page 99, 2006.

124 References

[92] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.
In Proceedings of the USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI, pages 429–444, 2014.

[93] Jan Lindström, Vilho Raatikka, Jarmo Ruuth, Petri Soini, and Katriina
Vakkila. IBM solidDB: In-Memory Database Optimized for Extreme
Speed and Availability. IEEE Data Engineering Bulletin, 36(2):14–20,
2013.

[94] David B. Lomet. Process Structuring, Synchronization, and Recovery
Using Atomic Actions. In Proceedings of the ACM Conference on Lan-
guage Design for Reliable Software, pages 128–137, 1977.

[95] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. To Lock,
Swap, or Elide: On the Interplay of Hardware Transactional Mem-
ory and Lock-Free Indexing. Proceedings of the VLDB Endowment,
PVLDB, 8(11):1298–1309, 2015.

[96] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-
braker. Rethinking main memory OLTP recovery. In Proceedings of the
International Conference on Data Engineering, ICDE, pages 604–615,
2014.

[97] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Crafti-
ness for Fast Multicore Key-Value Storage. In Proceedings of the Euro-
pean Conference on Computer Systems, EuroSys, pages 183–196, 2012.

[98] Norman May, Wolfgang Lehner, Shahul Hameed P., Nitesh Maheshwari,
Carsten Müller, Sudipto Chowdhuri, and Anil K. Goel. SAP HANA -
From Relational OLAP Database to Big Data Infrastructure. In Pro-
ceedings of the International Conference on Extending Database Tech-
nology, EDBT, pages 581–592, 2015.

[99] Memcached. http://memcached.org/.
[100] MemSQL Durability and Recovery. http://bit.ly/1nqM2qK.
[101] Guido Moerkotte, David DeHaan, Norman May, Anisoara Nica, and

Alexander Böhm. Exploiting Ordered Dictionaries to Efficiently Con-
struct Histograms with Q-error Guarantees in SAP HANA. In Proceed-
ings of the ACM Conference on Management of Data, SIGMOD, pages
361–372, 2014.

[102] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks using Write-Ahead Logging.
ACM Transactions on Database Systems, TODS, 17(1):94–162, 1992.

References 125

[103] C. Mohan, B. Lindsay, and R. Obermarck. Transaction Management in
the R* Distributed Database Management System. ACM Transactions
on Database Systems, TODS, 11(4):378–396, 1986.

[104] Henrik Mühe, Alfons Kemper, and Thomas Neumann. How to Effi-
ciently Snapshot Transactional Data: Hardware or Software Controlled?
In Proceedings of the International Workshop on Data Management on
New Hardware, DaMoN, pages 17–26, 2011.

[105] Henrik Mühe, Alfons Kemper, and Thomas Neumann. The Mainframe
Strikes Back: Elastic Multi-Tenancy using Main Memory Database Sys-
tems on a Many-core Server. In Proceedings of the International Confer-
ence on Extending Database Technology, EDBT, pages 578–581, 2012.

[106] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, and
Thomas Neumann. ScyPer: Elastic OLAP Throughput on Transactional
Data. In Proceedings of the ACM SIGMOD Workshop on Data Analytics
in the Cloud, DanaC, 2013.

[107] Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive String Dic-
tionary Compression in In-Memory Column-Store Database Systems.
In Proceedings of the International Conference on Extending Database
Technology, EDBT, pages 283–294, 2014.

[108] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and
Franz Färber. Cache-Efficient Aggregation: Hashing Is Sorting. In Pro-
ceedings of the ACM Conference on Management of Data, SIGMOD,
pages 1123–1136, 2015.

[109] Thomas Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. Proceedings of the VLDB Endowment, PVLDB,
4(9):539–550, 2011.

[110] Thomas Neumann and Alfons Kemper. Unnesting Arbitrary Queries.
In Datenbanksysteme für Business, Technologie und Web, BTW, pages
383–402, 2015.

[111] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast Serial-
izable Multi-Version Concurrency Control for Main-Memory Database
Systems. In Proceedings of the ACM Conference on Management of
Data, SIGMOD, pages 677–689, 2015.

[112] Christos Nikolaou, Manolis Marazakis, and G. Georgiannakis. Trans-
action Routing for Distributed OLTP Systems: Survey and Recent Re-
sults. Inf. Sci., 97:45–82, 1997.

126 References

[113] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and David B.
Lomet. Alphasort: A RISC Machine Sort. In Proceedings of the ACM
Conference on Management of Data, SIGMOD, pages 233–242, 1994.

[114] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K. Ouster-
hout, and Mendel Rosenblum. Fast Crash Recovery in RAMCloud. In
Proceedings of the ACM Symposium on Operating Systems Principles,
SOSP, pages 29–41, 2011.

[115] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. SOFORT: a Hybrid SCM-DRAM Storage Engine
for Fast Data Recovery. In Proceedings of the International Workshop
on Data Management on New Hardware, DaMoN, pages 1–7, 2014.

[116] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM. Operating Systems Review,
43(4):92–105, 2009.

[117] John K. Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra, Aravind
Narayanan, Diego Ongaro, Guru M. Parulkar, Mendel Rosenblum,
Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The Case
for RAMCloud. Communications of the ACM, 54(7):121–130, 2011.

[118] Sriram Padmanabhan. Data Placement in Shared-Nothing Parallel
Database Systems. PhD thesis, University of Michigan, 1992.

[119] Ippokratis Pandis, Pinar Tözün, Ryan Johnson, and Anastasia Aila-
maki. PLP: Page Latch-free Shared-everything OLTP. Proc. VLDB
Endow., 4(10):610–621, July 2011.

[120] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. Skew-Aware Au-
tomatic Data Partitioning in Shared-Nothing, Parallel OLTP Systems.
In Proceedings of the ACM Conference on Management of Data, SIG-
MOD, 2012.

[121] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge.
Storage Management in the NVRAM Era. Proceedings of the VLDB
Endowment, PVLDB, 7(2):121–132, 2013.

[122] Slawomir Pilarski and Tiko Kameda. Checkpointing for Distributed
Databases: Starting from the Basics. IEEE Transactions on Parallel
Distributed Systems, TPDS, 3(5):602–610, 1992.

References 127

[123] Holger Pirk, Florian Funke, Martin Grund, Thomas Neumann, Ulf
Leser, Stefan Manegold, Alfons Kemper, and Martin L. Kersten. CPU
and Cache Efficient Management of Memory-Resident Databases. In
Proceedings of the International Conference on Data Engineering,
ICDE, pages 14–25, 2013.

[124] Hasso Plattner. A Common Database Approach for OLTP and OLAP
using an In-Memory Column Database. In Proceedings of the ACM
Conference on Management of Data, SIGMOD, pages 1–2, 2009.

[125] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann,
Alexander Böhm, Anastasia Ailamaki, and Kai-Uwe Sattler. Scaling Up
Mixed Workloads: A Battle of Data Freshness, Flexibility, and Schedul-
ing. In Proceedings of the Technology Conference on Performance Eval-
uation and Benchmarking, TPCTC, pages 97–112, 2014.

[126] Erhard Rahm. A Framework for Workload Allocation in Distributed
Transaction Processing Systems. Journal on Systems Software, 18:171–
190, May 1992.

[127] Jun Rao and Kenneth A. Ross. Making b+-trees cache conscious in
main memory. In Proceedings of the ACM Conference on Management
of Data, SIGMOD, pages 475–486, 2000.

[128] Simone Raoux, Geoffrey W. Burr, Matthew J. Breitwisch, Charles T.
Rettner, Yi-Chou Chen, Robert M. Shelby, Martin Salinga, Daniel
Krebs, S-H Chen, Hsiang-Lan Lung, and Charles Lam. Phase-Change
Random Access Memory: A Scalable Technology. IBM Journal of Re-
search and Development, 52(4.5):465–479, 2008.

[129] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thom-
son. Low-Overhead Asynchronous Checkpointing in Main-Memory
Database Systems. In Proceedings of the ACM Conference on Man-
agement of Data, SIGMOD, pages 1539–1551, 2016.

[130] Kun Ren, Alexander Thomson, and Daniel J. Abadi. Lightweight Lock-
ing for Main Memory Database Systems. PVLDB, 6(2):145–156, 2012.

[131] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neu-
mann. High-Speed Query Processing over High-Speed Networks. Pro-
ceedings of the VLDB Endowment, PVLDB, 9(4):228–239, 2015.

[132] Wolf Rödiger, Tobias Mühlbauer, Philipp Unterbrunner, Angelika
Reiser, Alfons Kemper, and Thomas Neumann. Locality-Sensitive Op-
erators for Parallel Main-memory Database Clusters. In Proceedings of
the International Conference on Data Engineering, ICDE, pages 592–
603, 2014.

128 References

[133] Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout. Log-
Structured Memory for DRAM-based Storage. In Proceedings of the
USENIX conference on File and Storage Technologies, FAST, pages 1–
16, 2014.

[134] Kenneth Salem and Hector Garcia-Molina. Checkpointing Memory-
Resident Databases. In Proceedings of the International Conference on
Data Engineering, ICDE, pages 452–462, 1989.

[135] Kenneth Salem and Hector Garcia-Molina. System M: A Transaction
Processing Testbed for Memory Resident Data. IEEE Transactions on
Knowledge and Data Engineering, TKDE, 2(1):161–172, 1990.

[136] Rajkumar Sen, Jack Chen, and Nika Jimsheleishvilli. Query Optimiza-
tion Time: The New Bottleneck in Real-time Analytics. In Proceed-
ings of the International Workshop on In-Memory Data Management,
IMDM, pages 1–6, 2015.

[137] Vishal Sikka, Franz Färber, Anil K. Goel, and Wolfgang Lehner. SAP
HANA: The Evolution from a Modern Main-Memory Data Platform to
an Enterprise Application Platform. Proceedings of the VLDB Endow-
ment, PVLDB, 6(11):1184–1185, 2013.

[138] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas
Peh, and Christof Bornhövd. Efficient Transaction Processing in SAP
HANA Database: The End of a Column Store Myth. In Proceedings of
the ACM Conference on Management of Data, SIGMOD, pages 731–
742, 2012.

[139] IBM Knowledge Center: Pessimistic vs. Optimistic Concurrency Con-
trol. http://ibm.co/1PCPlI3.

[140] Michael Stonebraker. The Case for Shared Nothing. IEEE Data Engi-
neering Bulletin, 9:4–9, 1986.

[141] Michael Stonebraker and Ugur Çetintemel. “One Size Fits All”: An Idea
Whose Time Has Come and Gone. In Proceedings of the International
Conference on Data Engineering, ICDE, pages 2–11, 2005.

[142] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural
Era: (It’s Time for a Complete Rewrite). In Proceedings of the Interna-
tional Conference on Very Large Data Bases, VLDB, pages 1150–1160,
2007.

[143] Michael Stonebraker and Ariel Weisberg. The VoltDB Main Memory
DBMS. IEEE Data Engineering Bulletin, 36(2):21–27, 2013.

References 129

[144] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stan-
ley Williams. The Missing Memristor Found. Nature, 453(7191):80–83,
2008.

[145] Y. C. Tay, Nathan Goodman, and Rajan Suri. Locking performance in
centralized databases. ACM Transactions on Database Systems, TODS,
10(4):415–462, 1985.

[146] Times-Ten Team. In-Memory Data Management for Consumer Transac-
tions The Times-Ten Approach. In Proceedings of the ACM Conference
on Management of Data, SIGMOD, pages 528–529, 1999.

[147] Times-Ten Team. In-Memory Data Management in the Application
Tier. In Proceedings of the International Conference on Data Engineer-
ing, ICDE, pages 637–641, 2000.

[148] Times-Ten Team. Mid-tier Caching: The TimesTen Approach. In Pro-
ceedings of the ACM Conference on Management of Data, SIGMOD,
pages 588–593, 2002.

[149] Robert H. Thomas. A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases. ACM Transactions on Database
Systems, TODS, 4(2):180–209, June 1979.

[150] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems. In Proceedings of the ACM
Conference on Management of Data, SIGMOD, pages 1–12, 2012.

[151] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy Transactions in Multicore In-Memory Databases. In
Proceedings of the ACM Symposium on Operating Systems Principles,
SOSP, pages 18–32, 2013.

[152] Tianzheng Wang and Ryan Johnson. Scalable Logging through Emerg-
ing Non-Volatile Memory. Proceedings of the VLDB Endowment,
PVLDB, 7(10):865–876, 2014.

[153] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. Using
Restricted Transactional Memory to Build a Scalable In-Memory
Database. In Proceedings of the European Conference on Computer
Systems, EuroSys, pages 1–26, 2014.

[154] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
Fast In-Memory Transaction Processing using RDMA and HTM. In
Proceedings of the ACM Symposium on Operating Systems Principles,
SOSP, pages 87–104, 2015.

130 References

[155] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. Morgan Kaufmann, 2002.

[156] Kyu-Young Whang and Ravi Krishnamurthy. Query Optimization in a
Memory-resident Domain Relational Calculus Database System. ACM
Transactions on Database Systems, TODS, 15(1):67–95, March 1990.

[157] Authur Whitney, Dennis Shasha, and Stevan Apter. High Volume
Transaction Processing without Concurrency Control, Two Phase Com-
mit, SQL or C++. In Proceedings of the International Workshop on
High Performance Transaction Systems, HPTS, 1997.

[158] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. Vec-
torizing Database Column Scans with Complex Predicates. In Proceed-
ings of the International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures, ADMS,
pages 1–12, 2013.

[159] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast
Databases with Fast Durability and Recovery Through Multicore Paral-
lelism. In Proceedings of the USENIX Symposium on Operation System
Design and Implementation, OSDI, pages 465–477, 2014.

[160] Daniel C. Zilio. Physical Database Design Decision Algorithms and
Concurrent Reorganization for Parallel Database Systems. PhD thesis,
University of Toronto, 1998.

	Introduction
	History and Trends
	History
	Trends

	Issues and Architectural Choices
	Data Organization and Layout
	Indexing
	Concurrency Control
	Durability and Recovery
	Query Processing and Compilation

	Systems
	SQL Server Hekaton
	H-Store and VoltDB
	HyPer
	SAP HANA
	Other Systems

	Active Research and Future Directions
	Cold Data Management
	Transactional Memory
	Non-Volatile RAM

	References

