RDF Data-Centric Storage

Justin J. Levandoski Mohamed F. Mokbel
Department of Computer Science and Engineering, Universitdionesota, Minneapolis, MN
{justin,mokbel@cs.umn.edu

Abstract—The vision of the Semantic Web has brought about TS
new challenges at the intersection of web research and data <Person1, Name, Mike> | Subl | brop | Obi
. .. . <Personl, Website, ~mike> Personl | Name Mike
management. One fundamental research issue at this intersectio <Person2, Name, Mary> Persont | Website | _~mike
is the storage of the Resource Description Framework (RDF) <Persoud, Name, Joe> el B L
data: the model at the core of the Semantic Web. We present a <Cityl, Population, 200K> Persond | Name | Kate
data-centric approach for storage of RDF in relational databases. <City2, Population, 300K> 7 T BT
The intuition behind our approach is that each RDF dataset Query SELECT T1.0b3,T2.0bj
requires a tailored table schema that achieves efficient query “Find all people that have bot 2 VHERE 71 Propeome AND
. . . . . name and webpsite - =

processing by (1) reducing the need for joins in the query plan T2, Prop=Website AND
and (2) keeping null storage below a given threshold. Using TL.Subj=T2.5ubj;
a basic structure derived from the RDF data, we propose a (a) RDF Triples (b) Triple Store
two-phase algorithm involving clustering and partitioning. The — Website_
clustering phase aims to reduce the need for joins in a query. _ i S | 00| [Fersort oie
The partitioning phase aims to optimize storage of extra (i.e., null) TN et oy | e e Peront | Mike | 5 oa
data in the underlying relational database. Our approach does TS I I | Mo oo [ ST
not assume a particular query workload, relevant for RDF knowl- P | e | WULL R Tl T
edge bases with a large number of ad-hoc queries. Extensive SELECT T.Name, T Website SELECT T1.0bj,T2.0bj

1 i i i i FROM NameWebsite T FROM Name T1,Website T2
experimental e\/_ldence using threg publicly _avallable real-world hore B oebos te 18 NOT NULL; WHERE T1.Subj=T2.Subj;
RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our (c) N-ary Table (d) Binary Tables

schema creation technique provides superior query processing
performance compared to state-of-the art storage approad#s. Ffig 1. RDF Storage Example
Further, our approach is easily implemented, and complements

existing RDF-specific databases. networking [5], and biology and life science [6], making it a

emerging and challenging research domain.
. INTRODUCTION Efficient and scalable management of RDF data is a funda-
mental challenge at the core of the Semantic Web. Many pop-

) . . ar RDF storage solutions use relational databases teazhi
build the Semantic Web. The purpose of the Semantic W g

is - ¢ K for data-shari s scalability and efficiency. To illustrate, Figure 1@iyes
'S 10 provide a common framework Tor data-sharing acro%lssample set of RDF triples for information about four people
applications, enterprises, and communities [2]. By givilaga

X . . and two cities, along with a simple query that asks for people
semanticmeaning(through metadata), this framework aIIow§Nith both anameand website Figures 1(b) - 1(d) give three

:nachmgs to consur?;,] ur:jdetrst?niir,]_and reatshonsabout tthevs\}B Ssible approaches to storing these sample RDF triples in a
ureé and purpose ot the data. in this way, theé semantic MS, along with the translated RDF queries given in SQL.
resembles a worldwide database, where humans or compt&qgrge number of systems usetriple-store schema [7], [8],

agents can pose semantically meaningful queries and eec @j [10], [11], [12], where each RDF triple is stored dirgct

answers from a variety of distributed and distinct sources; . 4 ee-column table (Figure 1(b)). This approach presid

The core of the Semantic Web is built on the Resourq

. ; frefficient guery execution due to a proliferation eélf-
Description Framework (RDF) data model. RDF provides jgins, an expensive operation whereby the triple-store is joined

S|mplg syntax, where gach dqta item 1s brgken down Intoa@]ainst itself. Another approach is theperty table[10], [13]

<8“b3.60t'. pmpeﬁy.’ Ob].e.Ct> triple. T_he subjectrepresent§_(Figure 1(c)) that models multiple RDF properties as n-ary
an entity instance, identified by a Unl_form Resource. Id&m',ﬁ table columns. The n-ary table eliminates the need for a join
(URI). Thepropertyrepresents an attribute of the entity, Whllq

. . in our example query. However, as only one person out of
the abject represents the value of tiproperty As a simple four has a website, the n-ary table contains a high number
example, the following RDF triples model the fact that '

. . 3t nulls (i.e., the data is semi-structured), potentiaklysing

person J(;Err;olfliarggiwgrjgzrrft’he conference ICWS 2009: a high overhead in query processing [14]. Teéeecomposed
conf | OAB09 hasTitle **1CWs 2009’ storageschema [15] (Figure 1(d)) stores triples for each RDF
personl i sRevi ewer For conf| CAS09 property in a binary table. The binary table approach resluce

While the ubiquity of the RDF data model has yet to bg| storage, but introduces a join in our example query.

realized, many application areas and use-cases exist fét RD In this paper, we propose a new storage solution for RDF

such as education [3], mobile search environments [4],a$oca

Over the past decade, the W3C [1] has led an effort

ata that aims to avoid the drawbacks of these previous ap-
This work is supported in part by the National Science Fotindaunder proaCheS' Our approachd_ata-centrlc as it tailors a relatlonal
Grants 1150811998, 1150811935, and CNS0708604 schema based on a derivattucture of the RDF data with



the explicit goal of providing efficient query performanceknowledge of query usage statistics [10]. It is important to
We achieve this goal by taking into account the followingote, however, that our schema creation techniqusyssem-
trade-off of expensive query processing operations irticglal  independent and cancomplementany related full-fledged
databases: (1) reducing, on average, the need to join table®RDF-specific databases (e.g., see [7], [10], [8], [11]).

a query by storing as much RDF data together as possibleQther work in RDF storage has dealt with storing pre-
and (2) reducing the need to process extra data by tuniegmputedpathsin a relational database [19], used to answer
extra storage (i.e., null storage) to fall below a givenshi@d. graph queries over the data (i.e., connection, shortest path).
To handle these trade-offs, our approach involves two has®ther graph database approaches to RDF, including extensio
clustering and partitioning. The clustering phase scans theto RDF query languages to suppagraph queries, have been
RDF data to find groups of related properties (i.e., propsrtiproposed [20]. This work is outside the scope of this paper,
that always existogetherfor a large number of subjects).as we do not study the effect of graph queries over RDF.
Properties in acluster are candidates for storage together Automated relational schema design has primarily been
in an n-ary table. Likewise, propertigsot in a cluster are studied with the assumption afuery workload statistics
candidates for storage in binary tables. Haetitioning phase Techniques have been proposed for index and materialized
takes clusters from the clustering phase and balancesaitie-tr view creation [21], horizontal and vertical partitioning?],

off between storing as many RDF properties in clusters §&3], and partitioning for large scientific workloads [24€ur
possible while keeping null storage to a minimum (i.e., beloautomated data-centric schema design method for RDF sliffer
a given threshold). Our approach also handles cases ingolvirom these approaches in two main ways. (1) Our method does
multi-valuedproperties (i.e., properties defined multiple timegaot assume a set of query workload statistics, rather, we base
for a single subject) andeification (i.e., extra information our method on the structure found in RDF data. We believe
attached to a whole RDF triple). The output of our schemhis is a reasonable assumption given the fact that quevias o
creation approach can be considered a balanced mix of binR®F knowledge bases tend to be ad-hoc. (2) Previous schema
and n-ary tables based on the structure of the data. creation techniques cannot take into account the heteeogsn

The performance of our data-centric approach is backedture of RDF data, i‘.e., table design that balances itsraeh
by experiments on three large publicly available real-diorlbetween well-structured and semi-structured data sets.

RDF data sets: DBLP [16], DBPedia [17], and Uniprot [6].
Each of these data show a range of schema needs, and a
set of benchmark queries are used to show that our data-
centric schema creation approach improves query proggssinOverview. In general, two modules exist outside the
compared to previous approaches. Results show that our database engine to handle RDF data and queries: (1) an RDF
centric approach achieves orders of magnitude performanggort module, and (2) an RDF query module. Our proposed
improvement over the triple store, and speedup factors of dpta-centric schema creation technique exists inside e R

to 36 over a straight binary table approach. import module. The schema creation process takes as input an
RDF data set. The output of our technique is a schema (i.e., a
set of relational tables) used to store the imported RDF data
in the underlying DBMS.

Previous approaches to RDF storage have focused on threProblem Definition. Given a data set of RDF triples,
main categories. (1) Theiple-store (Figure 1(b)). Relational generate a relational table schema that achieves the fatigw
architectures that make use oftréple-store as theirprimary criteria. (1) Maximize the likelihood that queries will aess
storage scheme include Oracle [10], Sesame [9], 3-Stofle [13roperties in the same table without causing a join and
R-Star [12], RDFSuite [7], and Redland [8]. (2) Theperty (2) Minimize the amount of unnecessary data processing by
table (Figure 1(c)). Due to the proliferations ofelf-joins reducing extra data storage (e.g., null storage).
involved with thetriple-store the property tableapproach was  Join operations along with extra table accesses produce a
proposed. Architectures that make usepobperty tablesas large query processing overhead in relational databasas. O
their primary storage scheme include the Jena Semantic Webhema creation method aims to achievefttss criterion by
Toolkit [13]. Oracle [10] also makes use of property tablss &xplicitly aiming to maximizethe amount RDF data stored
secondarystructures, called materialized join views (MJVs)togetherin n-ary tables. However, as we saw in the example
(3) The decomposed storage modgl8] (Figure 1(d)) has given in Figure 1, n-ary tables can lead to extra storage that
recently been proposed as an RDF storage method [15], aiigcts query processing. Thus, our schema creation method
has been shown to scale well on column-oriented databasgims to achieve thesecondcriterion by keeping thenull
with mixed results for row-stores. Our work distinguishtsgif storagein each tablebelowa given threshold.
from previous work as we (1) provide tailored schema for
each RDF data set, using a balance between n-ary tables (i.e.
property table¥ and binary tables (i.elecomposed storajje
and (2) provide anautomatedmethod to place properties The intuition behind our approach is that different RDF
together in tables based on the structure of the data. Ri®vidata sets require different storage structures. For exampl
approaches to building property tables have involved the us relatively well-structured RDF data set (i.e., data where
of generic pre-computed joins, or construction by a DBA witthe majority of relevant RDF properties are defined for the

[1l. OVERVIEW & PROBLEM DEFINITION

Il. RELATED WORK

IV. DATA-CENTRIC SCHEMA CREATION



Property| Usage | |PC:  {PI, P2, P3, P4} (54% Support) number of joins during query execution. The clustering phas
P1 1000 {P1, P2, P5, P6} (45% Support)  |(b) . ! L
= =00 (P7, P8} (30% Support) also creates an initial set of final tables. These initialesb
, consist of the properties that amet found in the generated
P3 700 NullPercentage({P1, P2, P3, P4}) = 21% . . .
0 750 | |NultPercentage(tP1,P2,P5, P6}) = 32% | (© clusters (thus being stored |r_1_b|n_ary Fable_s) and the ptpper
NullPercentage({P7, P8}) = 4% clusters that donot need partitioning (i.e., in Phase Il). The
P5 450 2
b6 250 NullPercentage({P1, P3, P4}) — 13% partitioning phase (Phase Il) takes the clusters from Phase
ercentage({P1, P3, P4}) = 13% .
57 300 | | NuliPercentage(tP2,P5, P6)) = 5% (@ | and ensures that they containdisjoint set of properties
P8 350 while keeping the null storage for each cluster below a given
P9 50 Tables = {P1,P3,P4}, {P2,P5,P6}, © threshold. The final schema is the union of tables created fro
@ {P7,P8}, (P9} Phase | and Il.

Fig. 2. RDF Data Partitioning Example
B. Phase I: Clustering

: . . The clustering phase involves two stef@ep 1:A set of
subjects) may require a few large n-ary tables. sémi- 8Iusters (i.e., related properties) are found by leveigdire

st;;gtrunrefgrdatri Zert (I(-j?a.flin?t?;i) ﬂr}]a; dﬁgz gﬂg:ogoxvuribz):eufse offrequent itemsetinding, a method used in association
P: Prope ty . y 9 Pie mining [25]. For our purposes, the terfrsquent itemsets
binary tables as its primary storage schema.

and clusters are used synonymously. Thelustering phase
finds groups of properties that are fouoflfenin the subject-
A. Algorithm Overview and Data Structures property basketdata structure. The measure of how often
Our schema creation algorithm takes as parameters an R®Fluster occurs is called itsupport Clusters with high
data set, along with two numerical valuesipport threshold support implymany RDF subjects havell of the properties
and null threshold Support thresholdis a value used to in the cluster defined. In other words, high support implies
measure strength of correlation between properties in g Rthat properties in a cluster arelated since they often exist
data. If a set of properties meets this threshold, they dmgetherin the data. The metric for high support is set by
candidates to exist in the same n-ary table. fibk threshold the support threshold parameter to our algorithm, meaniag w
is the percentage of null storage tolerated for each tattleein consider a group of properties to be a clusbady if they
schema. have support greater than or equal to the support threshold.
The data structures for our algorithm are built using an)O(If we specify ahigh support threshold, the clustering phase
process that scans the RDF triples once (wheigethe number will produce a small number of small clusters with highly
of RDF triples). We maintain two data structures: Pipperty correlated properties. Féow support threshold, the clustering
usage list.This is a list structure that stores, for each propergghase will produce a greater number of large clusters, with
defined in the RDF data set, the count of subjects that hdess-correlated properties. Also, for our purposes, we are
that property defined. For example, if a property usage ligoly concerned withmaximum sizectluster (or maximum
were built for the data in Figure 1(a), the propeMyebsite frequent itemsejsthese are the clusters that occur often in the
would have a usage count of one, as it is only defined for tllataand contain themostproperties, meaning we maximize
subjectPersonl Likewise, theNameproperty would have a the data stored in n-ary tables. It is important to note that
usage count of four, arffopulationwould have a count of two. maximum frequent itemset generation can produce clusters
(2) Subject-property basket$his is a list of all RDF subjects with overlappingproperties.
mapped to their associated properties (i.e., a propertyeblas  Step 2:Construct an initial set of final tables. These tables
A single entry in the subject-property basket structureesakcontain (1) properties that aret found in generated clusters
the formsubjld — {propi,--- ,prop,}, wheresubjId is the (thus being stored in binary tables) and (2) the propertg-clu
Uniform Resource ldentifier of an RDF subject and its progers thatmeetthe null threshold and doot contain properties
erty basket is the list of all properties defined for that eabj thatoverlapwith other clusters, thus not necessitating Phase II.
As an example, for the sample data in Figure 1(a), six bask€ikisters that are added to the initial final table list @moved
would be created by this processirson1 — {Name, Website}, from the cluster list. The output of thelustering phasds
Person2 — {Name}, Person3 — {Name}, Persond — {Name}, @ list of initial final tables, and a set of clustelsgrtedin
Cityl — {Population}, City2 — { Population}. decreasing order by their support value, that will be sent to
Our schema creation algorithm involves two phassgs- the partitioning phase.
tering and partitioning. The clustering phase (Phase 1) aims Example. Consider an example with a support threshold of
to find groups of related properties in the data set usid$%, null threshold of 20% for the six subject-property sk
the support thresholgharameter. Clustering leverages previougiven in Section IV-A for the data in Figure 1(a). In this case
work from association rule mining to find related properties we have four possible property clustef&ame}, {Website},
the data. The idea behind the clustering phase is that gieper{ Population}, and{ Name, Website}. The clusted Name}
contained in the clusters should be stored in the same n-agcurs in 4 of the 6 property baskets, giving it a support
table. The canonical argument for n-ary tables is that edlatof 66%, while the cluste{ Name, Website} occurs in 1
properties are likely to be queried together. Thus, storiraj 6 property baskets, giving it a support of 16%. In this
related properties together in a single table will reduce tltase, the{ Name, Website} is generated as a cluster, since




Algorithm 1 Clustering possible n-ary tables storing RDF data for publications:

%} Fcl;zcst;g:scﬂsgggiss'itrzg';jggezflf»?’WashsupvThreshmu) TitleConf = {subj, title, conference} and TitleJourn =

3: Tables — properties not in PC /* Biﬁq;ff))/ tables */ {subj, title, journal}. An RDF query asking for all published

gf fO’OaL'(Cl € le do titles would involve two table accesses and a union, sirlessti

6 if Nu}y{?cf,epy) < Threshy then exist in both the conference and journal tables. (2) Engurin
;_ f?ﬁﬁﬁ?‘}c f o1 1oy % 6 then OK — false that each partitioned cluster, falls below the null storage
9 endif ’ ) threshold. Reducing null storage tunes the schema foresffici
ig eni(fj f(;rK then Tables < Tables U c1; Clusters < Clusters — c1 query prOCESSing.

12° retum Tables,Clusters We propose a greedy algorithm that attempts to keep the

cluster with highest support intact, whilepruning lower-
support clusters containing overlapping properties. Tiig-i

it meets thesupport thresholdand has themost possible ition behind the greedy approach is that clusters wighest
properties. Note the single properyPopulation} is not support contain propertle.s that occur togetheyst oftenln'
considered a cluster, and would be added to the initial find}¢ RDF data. Support is the percentage of RDF subjects
table list. Also, Figure 2(b) gives three example clustéoag that haveall of the cluster's properties. Keeping high support
with their support values, while Figure 2 (c) gives theirInuflusters intact implies that the most RDF subjects (with the
storage values (null storage calculation is covered Smomcluster’s properties defined) WI||. be stored .together in the
The output of the clustering phase in this example with gPle. Our greedy approach continually considersttighest
support and null threshold value of 20% would produce a'PPOrt cluster, and handles two cases based on its nugstor
initial final table list containing{ P9} (not contained in a a COMputation (from Section IV-B)Case 1 the cluster meets
cluster) and{ P7, P8} (not containing overlapping propertiesthe null storage threshold, meaning the given cluster frqm
and meeting the null threshold). The set of output clusters 'Thase | meets the null threshold but contains overlapping
be sent to the next phase would contgifl, P2, P3, P4} and properties. In this case, the cluster is conS|dereq a talnleath
{P1, P2, P5, P6}. Igwer-support cIu;ters with qverlapplng properties angnpd
Algorithm. Algorithm 1 gives the pseudocode for the clus(i-€-» the overlapping properties are removed from thesero
tering phase, and takes as parameters the subject-prayaesrty support clusters). We note that pruning will likely createer-
kets (B), the property usage listQU), the support threshold Iapp!ng clus.ter fra_gments_; these are c[usters thaimrdzonger.
(Threshsyy), and the null threshold paramet@firesh,,.). maximum S|ze_d (|.e.r,n.aX|mum frequgntems.ets) and contain
Step 1of the algorithm generates clusters, sorts them @;mlar properties. To illustrate, consider a list of thbasters
support value, and stores them in li€lusters (Line 1 in €1 = {A,B,C,D}, c; = {A,B,E, F}, and ¢z = {C,E}
Algorithm 1). This is a direct call to a maximum frequenfUch thatsupport(ci) > support(cz) > support(cs).
itemset algorithm [25], [26].Step 2 of the algorithm is Since our greedy approach choosess a final table, pruning
performed by first setting a lisTables to all binary tables Creates overlapping cluster fragments— { £, F'} andcs =
returned from step 1Tables is then expanded by adding{£}- Inthis case since; C ¢,, these clusters can loembined
from list Clustersthe clusters that do not contain overlappingu“ng the pruning step. Thus, weerge any overlapping
properties that are below the given null threshold (Lines 1 t fragments in the cluster lis€ase 2 the cluster doesot meet
in Algorithm 1). Calculation of the null storage for a clustethe null storage threshold. Thus,_l'_cpa_rtltloneduntll it meets
c is performed using the property usage IBU. Let |c| be the null storage threshold. Thrartitioning process repeatedly
the number of properties in a cluster, aRl.mazcount(c) €Moves the property from the cluster that causes theost
be the maximum property count for a cluster RU. As an null 'storage until it meets the null .threshqld. Removmg
example, in Figure 2 (b) it = {P1, P2, P3,P4}), |c| = 4 maximally reduces the null stqrage in one iteration. Furthe
and PU.mazcount(c) = 1000 (corresponding toP1). If support for clusters isnonotonic given two clusters:;; and
PU.count(c;) is the usage count for théth property inc, €2 ¢1 S ¢a <= support(ci) > support(cs). Thus, the
the null storage percentagéor c is: partitioned (;Iuster will still meet the given support tmqtd.
After removingp, two cases are consideredase 2ap exists
Y viec(PUmazcount(c) — PU.count(c;)) . .
= (el £ 1) * PU.mnazcount(o) in a lower-support cluster. Thug,has a chance of being kept
in a n-ray tableCase 2bp doesnot exist in a lower-support
cluster. This is the worst case, asnust be stored in a binary
table. Once the cluster is partitioned to meet the null tiwks
it is considered a table and all lower-support clusters with
o overlapping properties are pruned.
C. Phase II: Partitioning Example. From our running example in Figure 2,
The objective of thepartitioning phase is twofold: (1) Par- two clusters would be passed to the partitioning phase:
titioning the given clusters (from Phase I) into a set ofP1, P2, P3, P4} and {P1,P2,P5 P6}. The cluster
non-overlapping clusters (i.e., a property exists irsiagle {P1, P2, P3, P4} has the highest support value (as given
n-ary table). Ensuring that a property exists in a singie Figure 2 (b)), thus it is handled first. Since this cluster
cluster reduces the number of table accesses and unidoss not meet the null threshold (as given in Figure 2 (c))
necessary in query processing. For example, consider tthe cluster is partitionedQase 2 by removing the property

Null%(c)

Finally, the algorithm returns the initial final table lishch
remaining clusters (Line 1 in Algorithm 1).



Algorithm 2 Partition Clusters YR
1: Function Partition(PropClust C,PropUsage PU,Threshyn i) <Bookl. Auth. Smith> Subj | Auth. | Date
2: Tables — @ <Bnokl:Auth: Jones> Book1 | Smith |REEES
3: for all clust; € C do <Bookl, Date, 1998> Bookl | Jones [F1908
4: C «— (C — clusty)
5. if Null%(clust,, PU) > NullThresh then (a) RDF Triples (b) N-ary Table
6: repeat
7. p < property causing most null storage Prop 1 (i=1) | [ Prop 2 =) | [Prop 3 7=2)
8: _duStl_ “— _(ClUStl - p) . Tier 1 redundant 4x
9: if p exists in lower-support clustefo continue Anthor Date
10: elseTables < Tables U p [* Binary table */ Subi | Auth Subi | Date Tier 2| redundant 2x
11 until Null%(clust:, PU) < NullThresh Fywrrs Fmeret | Evwres perr Nl
12: end if Bookl :l(mes Tier 3 Null not redundant
13: Tables < Tables U clusty
14:  forall cluste € C do clusty « clusta — (clustz N clusty) (c) Binary Tables (d) Null Calculation
15:  Merge cluster fragments
16: end for Fig. 3. Multi-Valued Attribute Example

17: return Tables

V. IMPORTANT RDF CASES

We now outline two cases for RDF data important to schema
creation. The first case deals with storage nofilti-valued

that causes the most null storage2, corresponding to the properties. The second case covefification
property with minimum usage in thproperty usagedist in

Figure 2 (a). SinceP2 is fou.nd in the Iower-suppprt cIustgrA_ Multi-Valued Properties

{P1, P2, P5, P6} (Case 23 it has a chance of being kept in _ _ _
an n-ary table. Removing2 from {P1, P2, P3, P4} creates Thus far, o_nly3|ngle-valueqaropemes have been considered
the cluster{P1, P3, P4} that falls below the null threshold for storage in n-ary tables. We now propose a method to
of 20% (as given in Figure 2 (d)), thus it is ConsidereagndIemultl—vgluedpropert|es in ourfram_ework. For example,
a final table. Since{P1, P3, P4} and {P1, P2, P5, P6} Figure 3(b) gives an exgmple of a multi-valued pereW_a
contain overlapping propertiesP1 is then pruned from for the RDf triples in Figure 3(a). Each property is as_szlgned
(P1, P2, P5,P6), creating cluster {P2, P5, P6}. Since _aredundancy factofr f), a measure of repetitioper subj_ect
cluster { P2, P5, P6} also falls below the null threshold (asIn the RDF data set. IV, is the total number of SUbJ?Ct'
given in Figure 2 (d)), it would be added to the final tabl@OPerty baskets, Bt]ﬁ?)gﬂ((ja}ncy factorfor a propertyp is

list in the next iteration. Finally, Figure 2 (e) gives thedlin cOMputed asf = “Zrmrnt. The termPU.count(p) is a

schema with the union of tables returned from both phase£OUNt Of theactualproperty usage in a data set, while the term
support(p) x N, is the usage count of a property if it were

Algorithm. Algorithm 2 gives the psuedocode for thesingle-valued We note that the property usage tablel)
partitioning phase, taking as arguments the list of properstores the usage count (including redundancy) of each gyope
clusters ) from Phase |, sorted in decreasing order b the data set (e.g., in Figure 3(apU.count(auth) = 2
support value, theproperty usagelist (PU), and the null and PU.count(date) = 1), while the subject-property basket
threshold value Thresh,,;;). The algorithm first initializes stores a property defined for a subject omlgce (e.g., in
the final table listT'ables to empty (Line 2 in Algorithm 2). Figure 3(a) the basket ookl — {auth,date}). For the
Next, it traverses each property clustéist; in list C, starting data in Figure 3(a), thef value forauthis 2 (&), while
at the cluster with highest support (Line 2 in Algorithm 2)for date it is 1 (1i1)- To control redundancy, a user can
Next, clust; is removed from the cluster lisf (Line 2 in define aredundancy thresholdhat defines the maximumf
Algorithm 2). The algorithm then checks thalust; meets value a property can have in order to qualify for storage in
the null storage threshold (Line 2 in Algorithm 2). If this isan n-ary table. The f values multiply each other, thus if
the case, it considerdust; a final table (i.e.Case }, and two multi-valued properties are stored in an n-ary table, th
all lower-support clusters with properties overlappitigst; amount of redundancy isf; x r fo. Propertiesiot meeting the
are pruned and cluster fragments are merged. (Lines 2 tdhPeshold are explicitly disqualified from thaustering and
in Algorithm 2). If clust; does not meet the null threshold partitioning phases, and stored in a binary table. The example
it must be partitioned (i.e.Case 3. The algorithm finds given in Figure 3(c) stores thauth property in a separate
propertyp causing maximum storage ihust; (corresponding binary table, removing redundant storage of dage property.
to the minimum usage count fefust; in PU) and removes If the redundancy thresholé 1, multi-valued properties are
it. (Lines 2 and 2 in Algorithm 2). Ifp exists in a lower- not stored in n-ary tables.
support cluster (i.e.Case 23, iteration continues, otherwise If multi-valued properties are allowed, null calculatidde¢-
(i.e.,Case 2b p is added tdl'ables as a binary table (Lines 2 tion 1V-B) changes. Due to space constraints, we outline how
and 2 in Algorithm 2). Partitioning continues untfust; the calculation changes using the example in Figure 3(d),
meets the null storage threshold (Line 2 in Algorithm 2where Prop 1 is single-valued (with-f = 1), while Prop 2
When partitioning finishes, the algorithm considetast; a and Prop 3 are multi-valued (withrf = 2). The shaded
final table, and prunes all lower-support clusters of priger columns of the table represent the property usage for each
overlapping withclust,; while merging any cluster fragmentsproperty if they weresingle valued(as calculated in the f
(Lines 2 to 2 in Algorithm 2). equation). Using these usage values, the initial null g®ra




- ~ Reification Triples Statistic DBLP |DBPedia | Uniprot

=~
( Enzyme ) <reifID1, Subj, Protein1> % Total Propertics 30 19K 86
<reifID1, Prop, E > - -
X z <:§;lel, Orbojl,)En;;i]nr:; % total props stored in binary tables 40% | 99.59% 69%

< =

T ——— Cemt - <reifID1, Certain, False> % total props stored in n-ary tables 60% 0.41% 31%
ertain
Reification Table # Multi-Val Properties 4 6080 35
Subj. RILA Lrop. Obi. | Certain Min rf'value for multi-val properties 34 4 1.2
reifID1 | Proteinl | Enzyme | Enzymel | False — -
% multi-val prop stored in n-ary tables 0% 0% 17%
(a) Reification Graph (b) Reification Table

(a) Schema Breakdown
Fig. 4. Reification Example

Data Set | Binary | 3-ary 4-ary 5-ary |(6+)-ary| Total
value for a table can be calculated as discussed in Sec- DBLP | 12 2 6 4 6 30
tion IV-B. However, the final calculation must account for Bf;fgt” 1869022 i Z : 556 18)61(
redundancy. In Figure 3(d), the table displays thresRindancy

tiers. Tier 1 represents rows with all three properties defined,
thus having a redundancy of 4 (the’ multiplication for Fig. 5. Data Centric Schema Tables

Prop 2 and Prop 3). Tier 2 has a redundancy of 2 (thef

for Prop 2). Thus, the repeated null values for tReop 3 contain more than 10M triples; specific details for thesea dat

column must be calculatedier 3 does not have redundancycan be found in our companion technical report [27]. To &eat
(due to ther f value of 1 for Prop 1). data-centric tables, theupport parameter was set to 1% (a

generally accepted default value [28]), the null threshalidie
was set to 30%, and the redundancy threshold was set to
1.5. Figure 5(a) gives the breakdown of the percentage of
Reification is an RDF property that allonstatementso gl properties for each data set that are stored in n-anesabl
be made about other RD$tatementsAn example of reifi- or binary tables (rows 1-3). This table gives the number of
cation is given in Figure 4, taken from the Uniprot proteimulti-valued properties in each data set (row 4), along with
annotation data set [6]. The graph form of reification iginimumredundancy factor from all these properties (row 5).
given in Figure 4(a), while the RDF triple format is givenOnly the Uniprot data set had multi-valued properties that m
at the top of Figure 4(b). The Uniprot RDF data storege redundancy threshold of 1.5, thus six of these propertie
for each< protein, Enzyme, enzyme > triple information (17%) were kept in n-ary tables (row 6). Figure 5(b) gives the
about whether the relationship between protein and enzymgle type (binary or n-ary) and the distribution of proinﬂ't
has been verified to exist. This information is modeled bstored in each table type.
the Certain property, attached as a vertex to the whole The experimental machine used is a 64-bit, 3.0 GHz Pen-
< protein, Enzyme, enzyme > triple for the graph repre- tium IV, running Ubuntu Linux with 4Gbytes of memory.
sentation in Figure 4(a). The only viable method to represepur schema creation module was built using C++, and inte-
such information in RDF is to first create a new subject Ilgrated with the PostgreSQL 8.0.3 database. We implemented
for the reification statement (e.greiflD1 in Figure 4(b)). a triple-storesimilar to many RDF storage applications (e.g.,
Next, thesubject property, andobjectof the reified statement see [7], [9], [11], [12]), which is a single table containing
are redefined. Finally, the property and object are defined f@ree columns corresponding to an RDF subject, property, an
the reification statement (e.gertain andfalse respectively, object. We implemented the decomposed stonagt¢hod by
in Figure 4(b)). We mentioneification as our data-centric allowing each table to correspond to a unique property in the
method greatly helps query processing over this structupbF dataset. Our data-centric approdmfilt both n-ary and
Notice that for reification a set of deast four properties pinary tables according to the structure of each data set. In

must always exist together in the data. Thus, our schem@epth implementation details (e.g., indexing) are foundun
creation method wiltlusterthese properties together in an ncompanion technical report [27].

ary table, as given in Figure 4(b). Our framework also makes
an exception to allow reification propertissibject property . .
andobjectto exist in multiple n-ary tables for each reificatiorl3 ' E>.<per|m(.antal Eva.lluatlon

edge. This exception means that a separate n-ary table willhis section provides performance numbers for a set of
be created for each reification edge in the RDF data (e.gueries based on previous benchmarks for Uniprot [10] and
Certain in figure Figure 4), Section VI will experimentally DBPedia [29]. Since the benchmarks were originally designe

(b) Table Distribution (by Property)

B. Reification

test this claim over the real-world Uniprot [6] data set. ~ for their respective data, we first generalize the query imse
of its signature, then give the specific query for each data
VI. EXPERIMENTS set. For each query, Figure 6 gives the query runtimes (in

This section experimentally evaluates our RDF scheni§conds) for each of the three storage approaches: ttipie;s

creation approach with existing RDF storage methods. ~ decomposed storage model (DSM), and our proposed data-
centric approach. All times given are the average of ten,runs

) with the cache cleared between runs.
A. Experimental Setup 1) Query 1: Predetermined props/all subjectQuery 1
We use three real-world data sets in our experimeni{&igure 6(a)) asks about a predetermined set of RDF proper-
DBLP [16], DBPedia [17], and Uniprot [6]. All data setsties. The general signature of this query is to seddictecords



110 66— 50 75 55
60
45
30

30
. ; 20 E
10
0 0 0 — — 0 —_ . 1

15
DBLP DBpedia | Uniprot DBLP DBpedia | Uniprot DBLP DBpedia | Uniprot DBLP DBpedia | Uniprot -
W Triple-Store | 10556 81.01 72.61 W Triple-Store | 10.424 5506 15517 W Triple-Store | 47.49 10.24 38.82 mTriple-Store | 72,53 553 4101 0
DSM 59.15 0.02 23.92 DSM 8.837 0025 5.387 DSM 4031 224 938 DSM 7.97 004 884 Centric
OQData-Centric| 161 0002 18.99 QData-Centric|  8.068 0002 3.749 OData-Centric]  1.91 212 295 @Data-Centric| 446 004 471 =Uniprot| 5174 26.22 496

(a) Query 1 (b) Query 2 (c) Query 3 (d) Query 4 (e) Query 5

44

33

22

Runtime (sec)
Runtm;e (sec)
Runtime (sec)
Runtime (sec)
Runtime (sec)

Data-

Triple-Store DSM

Fig. 6. Queries

for which certain properties are defined. For specific data $8BLP data, data-centric approach stored all query progerti
queries (along with SQL), the reader is encouraged to seea single table, causing a factor of 24 speedup over the
our companion technical report [27]. Overall, the datatgen triple-store, and a factor of 21 speedup over the decomposed
approach shows better relative runtime performance fom@Quepproach. This performance is due to the data-centric appro
1. Interestingly, the data-centric approach showed a ffaafto requiring a single table access, with all five queried proger
65 speedup over the triple-store for the DBLP query, ardustered to a single table. Meanwhile, both the the triitee
a factor of 36 speedup over the decomposed approach. Hmel decomposed approaches required separate table accesse
DBLP data is relatively well-structured, thus, our datatde for the range query and joins. The data-centric approaah als
approach stores a large number of properties in n-ary tallesshows good speedup for the semi-structured Uniprot data.
fact, the data-centric approach involved a single tablessc 4) Query 4: Predetermined props/spec subjediuery 4
and no joins, while the triple-store and decomposed approdEigure 6(d))retrieves a specific set of properties for dipar
both used six table accesses and five self-joins. Similtiy, lar set of RDF subjects. The general signature of this query i
data-centric approach shows modest speedup for the DBPedligelection of a set of RDF subjects (using the IN operator).
and Uniprot data sets again due to the decreased table asces@r specific data set queries (along with SQL), the reader is
and joins. For instance the data-centric approach regtived encouraged to see our companion technical report [27].rhgali
table accesses in the Uniprot query and four subject-tgestib the data-centric approach shows better overall performanc
joins, compared to six table accesses and five joins for thethat of the other schema approaches. For the Uniprot and
triple-store and decomposed approaches. DBLP, the data-centric approach shows good speedup over the
triple-store, and a 1.8 speedup over the decomposed approac
ol he data-centric approach required only two table accesses
d one join for the Uniprot data, and a single table access
the DBLP data, compared to four and five table accesses,
gspectively, for the other storage methods. The perfocman

to see our companion technical report [27]. For DBLP, th imilar for the dat i dd d methods
guery accesses 13 RDF properties. The decomposed and tri @s similar for the data-centric and decomposed methods ove
e DBPedia data, as both queries accessed all binary tables

store approach involved 13 table accesses, while the d 5) Query 5: Reification: Query 5 (Figure 6(e)) involves

gentnc apprdoachdmvol\c/ie? nlne.tThe perforrrr:anc.;e pet};vggn:!g query using reification. For this query, only the Uniprot
ecomposed and our gata-Centric approacnes 1S SIMIarsin 19, et is tested, as it is the only experimental data set tha

case, due to the fact that some tables in the data-centric Alikes use of reification. The query here igdisplay the top
proach containegxiraneousproperties, meaning some storeqﬂt count for statements made about proteilvs the Uniprot

propertleszv;eFr;Ie:)rllot usedt!n th_?hqugr)t/. For ?Bpedd"z’ the d?u%fgtaset, this information is stored as reified data with ke t
accesse; h.b'tprop_er'lles. | ? a a-c;en ne ant ecomposSiect property corresponding to a protein identifier, and the
approaches exhibit a similar relative performance to tpéet hit count modeled as thisits property. The large difference in

store \r']‘”th sub-sgcotnii :ur;tllr??sblHowever, the dciat;—ceglic rformance numbers here is mainly due to the table accesses
proach accessed atotal o ables, comparedto the €6leded by both the decomposed and triple-store to recehstru

3?/ the decomposed ingtglgle—storet.appr_lc_)r?ch des. For Unlglliﬂfe statements used for reification. Our data-centric ambro
N _|s| qu;ary accessei ivolved ?;topertlesl. € ecoma‘pgfhe %@glved a single table access with no joins, due to the fact
ripie-store approach involved TiIeen table accessesy that the reification structure being clustered together-aryn

fourteen s_ubject-to-subject joins. Meanwhile, _the dm tables. Our approach shows a speedup of 5.29 and 10.44 over
app_roac_h _mvolved 11 table accesses generating 10 sub}ectt-he decomposed and triple-store approaches.
subject joins. 6) Relative SpeedugFigure 7(a) gives the relative speedup

3) Query 3: Administrative queryQuery 3 (Figure 6(c)) for the data-centric approach over the triple-store apgrdar
is an administrative query asking about date ranges foreach query and data set, while Figure 7(b) gives the same
set of recently modified RDF subjects in the data set. Tlspeedup data over the decomposed approach. The DBLP data
general signature of this query is a range selection oversdatset is well-structured, and outata centricapproach showed
For specific data set queries (along with SQL), the readerssperior speedup for queries 1 and 3 over the DBLP data
encouraged to see our companion technical report [27]. Tag it clusteredall related data to the same table. Thus, the
data-centric approach shows better relative performamtteat queries were answered with a single table access, compared t
of the other schema approaches. Again, for the well-stradtu multiple accesses and joins for the triple-store and decsexh

2) Query 2: Single subject/all defined propertieQuery
2 (Figure 6(b)) involves a selection of all defined properti
for a single RDF subject (i.e., a single record). For speci
data set queries (along with SQL), the reader is encoural



10,000

[

10,000

=
1)
S]

100

ks

DBPedia
50,256.41
3,410.31
4.83
140.28
0

Mn

DBLP
65.60
1.29
24.89
16.25
0

1 e

DBLP
36.76
1.10
2113
1.79
0

DBPedia
14.00
15.13

1.06
1.01
0

Uniprot
3.82
4.14

13.16
871
10.44

—=
Uniprot
126
144
3.18
183
5.29

1 1

Speedup (log)
Speedup (log)

(10]

B Queryl
" Query2

Query3
DQuery4
=Query 5|

W Queryl
® Query2

Query3|
DQuery4
=Query5|

(11]

(12]

(a) Speedup over Triple Store (b) Speedup over DSM

(23]

Fig. 7. Relative Speedup [14]

approaches. For DBPedia queries 1 and 2, the data-cer;[L['
approach showed speedup over the decomposed approa
due to accessing the few n-ary tables present to store this
data. However, this data was mostly semi-structured, thidé!
queries 3 and 4 showed similar performance as they involved
the sametable structure. The speedup over the triple-store
for DBPedia was superior as queries using the data-centfié
approach involved tables (1) with smaller cardinality angdg;
(2) containing, on average, only the properties necessaag-t
swer the queries, as opposed to the high-selectivity jodesiu (19]
by the large triple-store. Our data-centric approach skiowe [
moderate speedup performance for the Uniprot queries due
to two main factors: (1) some data-centric tables contain&d!
extraneous properties and multi-valued attributes thasead [
redundancy, and (2) the semi-structured nature of the Ohipr
data set led to a similar number of relative joins and tabf?s]
accesses.

[24]

VIl. CONCLUSION

This paper proposed a data-centric schema creation &5}
proach for storing RDF data in relational databases. OHE]
approach derives a basitructurefrom RDF data and achieves
a good balance between using n-ary tables (peoperty [27]
tableg and binary tables (i.egdecomposed storapeo tune

L : X . [28]
RDF storage for efficient query processing. Firstlastering
phase finds all related properties in the data set that &#
candidates to be stored together. Second, the clustergmtre s
to a partitioning phase to optimize for storage of extra data
in the underlying database. We compared our data-centric
approach with state-of-the art approaches for RDF storage,
namely thetriple storeanddecomposed storagasing queries
over three real-world data sets. The data-centric approach
shows large orders of magnitude performance improvement

over the triple store, and speedup factors of up to 36 over the
decomposed approach.

REFERENCES

[1] “World Wide Web Consortium (W3C): http://www.w3c.org.”

[2] “W3C Semantic Web Activity: http://www.w3.0rg/2001/siv/

[3] D. Kotzinos, S. Pediaditaki, A. Apostolidis, N. Athamss and
V. Christophides, “Online curriculum on the semantic Welke ®©SD-
UoC portal for peer-to-peer e-learning,” WWW 2005.

J. S. Jeon and G. J. Lee, “Development of a Semantic Web Bdsbde
Local Search System,” ilWWW 2007.

X. Wu, L. Zhang, and Y. Yu, “Exploring social annotatiorisr the
semantic web,” irWWW 2006.

“Uniprot RDF Data Set: http://dev.isb-sib.ch/projsftniprot-rdf/.”

S. Alexaki, V. Christophides, G. Karvounarakis, D. Rlesakis, and
K. Tolle, “The ICS-FORTH RDFSuite: Managing Voluminous RDF
Description Bases,” isemWep2001.

D. Beckett, “The Design and Implementation of the RedlanBFR
Application Framework,” inWWW 2001.

(4]
(5]
(6]
(7]

(8]

J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A &ene

Architecture for Storing and Querying RDF and RDF SchemaSWwGC

2002.

E. I. Chong, S. Das, G. Eadon, and J. Srinivasan, “An [Effic SQL-

based RDF Querying Scheme,” WLDB, 2005.

S. Harris and N. Gibbins, “3store: Efficient bulk rdf sige,” inPSS$

2003.

L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “Rstar: an rdérstge and

query system for enterprise resource managementIikM, 2004.

K. Wilkinson, “Jena Property Table Implementation,” $8WS2006.

J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. &ughton,

“Extending rdbmss to support sparse datasets using an rietedp

attribute storage format,” ilCDE, 2006.

D. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, dBble
NSemantic web Data Management Using Vertical PartitionimgVLLDB,

2007.

B. Aleman-Meza, F. Hakimpour, I. B. Arpinar, and A. P. Shet

“Swetodblp ontology of computer science publicatioMgb Semantics:

Science, Services and Agents on the World Wide W#b5, no. 3, pp.

151-155, 2007.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiakd Z. Ives,

“DBpedia: A Nucleus for a Web of Open Data,” ISWG 2007.

G. P. Copeland and S. N. Khoshafian, “A Decomposition &jer

Model,” in SIGMOD, 1985.

A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura, “A Fadised

Relational RDF Database,” iADC, 2005.

R. Angles and C. Gutierrez, “Querying rdf data from apralatabase

perspective,” inESWGC 2005.

S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Autordagelection

of materialized views and indexes in sql databasesYLDB, 2000.

S. Agrawal, V. R. Narasayya, and B. Yang, “Integratingrtical and

horizontal partitioning into automated physical databassigh,” in

SIGMOD 2004.

S. B. Navathe and M. Ra, “Vertical partitioning for datse design: A

graphical algorithm,” inSIGMOD, 1989.

S. Papadomanolakis and A. Ailamaki, “Autopart: Automgtischema

design for large scientific databases using data partitgghin SSDBM

2004.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining #aciation

Rules,” in VLDB, 1994.

D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A Maximal Equent

Iltemset Algorithm for Transactional Databases,"l@DE, 2001.

J. J. Levandoski and M. F. Mokbel, “RDF Data-Centric rage,”

University of Minnesota, Tech. Rep. UM-CS-TR-9999, 2009.

R. Agrawal and J. Kiernan, “An Access Structure for Gatiged

Transitive Closure Queries,” iflCDE, 1993.

“RDF Store Benchmarks with DBpedia:

http://Iwww4.wiwiss.fu-berlin.de/benchmarks-200801/.”



