
1

RDF Data-Centric Storage
Justin J. Levandoski Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
{justin,mokbel@cs.umn.edu}

Abstract—The vision of the Semantic Web has brought about
new challenges at the intersection of web research and data
management. One fundamental research issue at this intersection
is the storage of the Resource Description Framework (RDF)
data: the model at the core of the Semantic Web. We present a
data-centric approach for storage of RDF in relational databases.
The intuition behind our approach is that each RDF dataset
requires a tailored table schema that achieves efficient query
processing by (1) reducing the need for joins in the query plan
and (2) keeping null storage below a given threshold. Using
a basic structure derived from the RDF data, we propose a
two-phase algorithm involving clustering and partitioning. The
clustering phase aims to reduce the need for joins in a query.
The partitioning phase aims to optimize storage of extra (i.e., null)
data in the underlying relational database. Our approach does
not assume a particular query workload, relevant for RDF knowl-
edge bases with a large number of ad-hoc queries. Extensive
experimental evidence using three publicly available real-world
RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our
schema creation technique provides superior query processing
performance compared to state-of-the art storage approaches.
Further, our approach is easily implemented, and complements
existing RDF-specific databases.

I. I NTRODUCTION

Over the past decade, the W3C [1] has led an effort to
build the Semantic Web. The purpose of the Semantic Web
is to provide a common framework for data-sharing across
applications, enterprises, and communities [2]. By givingdata
semanticmeaning(through metadata), this framework allows
machines to consume, understand, and reason about the struc-
ture and purpose of the data. In this way, the Semantic Web
resembles a worldwide database, where humans or computer
agents can pose semantically meaningful queries and receive
answers from a variety of distributed and distinct sources.
The core of the Semantic Web is built on the Resource
Description Framework (RDF) data model. RDF provides a
simple syntax, where each data item is broken down into a
<subject, property, object> triple. The subject represents
an entity instance, identified by a Uniform Resource Identifier
(URI). Thepropertyrepresents an attribute of the entity, while
the object represents the value of theproperty. As a simple
example, the following RDF triples model the fact that a
person John is a reviewer for the conference ICWS 2009:

person1 hasName ‘‘John’’
confICWS09 hasTitle ‘‘ICWS 2009’’
person1 isReviewerFor confICWS09

While the ubiquity of the RDF data model has yet to be
realized, many application areas and use-cases exist for RDF,
such as education [3], mobile search environments [4], social

This work is supported in part by the National Science Foundation under
Grants IIS0811998, IIS0811935, and CNS0708604

<Person1, Name, Mike>

<Person1, Website, ~mike>

<Person2, Name, Mary>

<Person3, Name, Joe>

<Person4, Name, Kate>

<City1, Population, 200K>

<City2, Population, 300K>

Query

“Find all people that have both a

name and website”

(a) RDF Triples

SELECT T1.Obj,T2.Obj

FROM TS T1,TS T2

WHERE T1.Prop=Name AND

T2.Prop=Website AND

T1.Subj=T2.Subj;

Subj Prop Obj

TS

Person1 Name Mike

Person1 Website ~mike

Person2 Name Mary

Person3 Name Joe

Person4 Name Kate

City1 Pop. 200K

City2 Pop. 300K

(b) Triple Store

Subj Name Website

NameWebsite

Person1 Mike ~mike

Person2 Mary NULL

Person3 Joe NULL

SELECT T.Name,T.Website

FROM NameWebsite T

Where T.Website IS NOT NULL;

Person4 Kate NULL

Pop.

200K

Subj

City1

Population

300KCity2

(c) N-ary Table

Obj

200K

Subj

City1

Population

300KCity2

Subj Obj

ObjName

Person1 Mike

~mike

Person2 Mary

Person3 Joe

Subj

Person1

Website

Person4 Kate

SELECT T1.Obj,T2.Obj

FROM Name T1,Website T2

WHERE T1.Subj=T2.Subj;

(d) Binary Tables

Fig. 1. RDF Storage Example

networking [5], and biology and life science [6], making it an
emerging and challenging research domain.

Efficient and scalable management of RDF data is a funda-
mental challenge at the core of the Semantic Web. Many pop-
ular RDF storage solutions use relational databases to achieve
this scalability and efficiency. To illustrate, Figure 1(a)gives
a sample set of RDF triples for information about four people
and two cities, along with a simple query that asks for people
with both anameand website. Figures 1(b) - 1(d) give three
possible approaches to storing these sample RDF triples in a
DBMS, along with the translated RDF queries given in SQL.
A large number of systems use atriple-storeschema [7], [8],
[9], [10], [11], [12], where each RDF triple is stored directly
in a three-column table (Figure 1(b)). This approach provides
inefficient query execution due to a proliferation ofself-
joins, an expensive operation whereby the triple-store is joined
against itself. Another approach is theproperty table[10], [13]
(Figure 1(c)) that models multiple RDF properties as n-ary
table columns. The n-ary table eliminates the need for a join
in our example query. However, as only one person out of
four has a website, the n-ary table contains a high number
of nulls (i.e., the data is semi-structured), potentially causing
a high overhead in query processing [14]. Thedecomposed
storageschema [15] (Figure 1(d)) stores triples for each RDF
property in a binary table. The binary table approach reduces
null storage, but introduces a join in our example query.

In this paper, we propose a new storage solution for RDF
data that aims to avoid the drawbacks of these previous ap-
proaches. Our approach isdata-centric, as it tailors a relational
schema based on a derivedstructure of the RDF data with

2

the explicit goal of providing efficient query performance.
We achieve this goal by taking into account the following
trade-off of expensive query processing operations in relational
databases: (1) reducing, on average, the need to join tablesin
a query by storing as much RDF data together as possible,
and (2) reducing the need to process extra data by tuning
extra storage (i.e., null storage) to fall below a given threshold.
To handle these trade-offs, our approach involves two phases:
clustering and partitioning. The clustering phase scans the
RDF data to find groups of related properties (i.e., properties
that always existtogether for a large number of subjects).
Properties in acluster are candidates for storage together
in an n-ary table. Likewise, propertiesnot in a cluster are
candidates for storage in binary tables. Thepartitioning phase
takes clusters from the clustering phase and balances the trade-
off between storing as many RDF properties in clusters as
possible while keeping null storage to a minimum (i.e., below
a given threshold). Our approach also handles cases involving
multi-valuedproperties (i.e., properties defined multiple times
for a single subject) andreification (i.e., extra information
attached to a whole RDF triple). The output of our schema
creation approach can be considered a balanced mix of binary
and n-ary tables based on the structure of the data.

The performance of our data-centric approach is backed
by experiments on three large publicly available real-world
RDF data sets: DBLP [16], DBPedia [17], and Uniprot [6].
Each of these data show a range of schema needs, and a
set of benchmark queries are used to show that our data-
centric schema creation approach improves query processing
compared to previous approaches. Results show that our data-
centric approach achieves orders of magnitude performance
improvement over the triple store, and speedup factors of up
to 36 over a straight binary table approach.

II. RELATED WORK

Previous approaches to RDF storage have focused on three
main categories. (1) Thetriple-store (Figure 1(b)). Relational
architectures that make use of atriple-store as theirprimary
storage scheme include Oracle [10], Sesame [9], 3-Store [11],
R-Star [12], RDFSuite [7], and Redland [8]. (2) Theproperty
table (Figure 1(c)). Due to the proliferations ofself-joins
involved with thetriple-store, theproperty tableapproach was
proposed. Architectures that make use ofproperty tablesas
their primary storage scheme include the Jena Semantic Web
Toolkit [13]. Oracle [10] also makes use of property tables as
secondarystructures, called materialized join views (MJVs).
(3) The decomposed storage model[18] (Figure 1(d)) has
recently been proposed as an RDF storage method [15], and
has been shown to scale well on column-oriented databases,
with mixed results for row-stores. Our work distinguishes itself
from previous work as we (1) provide atailored schema for
each RDF data set, using a balance between n-ary tables (i.e.,
property tables) and binary tables (i.e.,decomposed storage),
and (2) provide anautomatedmethod to place properties
together in tables based on the structure of the data. Previous
approaches to building property tables have involved the use
of generic pre-computed joins, or construction by a DBA with

knowledge of query usage statistics [10]. It is important to
note, however, that our schema creation technique issystem-
independent, and cancomplementany related full-fledged
RDF-specific databases (e.g., see [7], [10], [8], [11]).

Other work in RDF storage has dealt with storing pre-
computedpaths in a relational database [19], used to answer
graph queries over the data (i.e., connection, shortest path).
Other graph database approaches to RDF, including extensions
to RDF query languages to supportgraph queries, have been
proposed [20]. This work is outside the scope of this paper,
as we do not study the effect of graph queries over RDF.

Automated relational schema design has primarily been
studied with the assumption ofquery workload statistics.
Techniques have been proposed for index and materialized
view creation [21], horizontal and vertical partitioning [22],
[23], and partitioning for large scientific workloads [24].Our
automated data-centric schema design method for RDF differs
from these approaches in two main ways. (1) Our method does
not assume a set of query workload statistics, rather, we base
our method on the structure found in RDF data. We believe
this is a reasonable assumption given the fact that queries over
RDF knowledge bases tend to be ad-hoc. (2) Previous schema
creation techniques cannot take into account the heterogeneous
nature of RDF data, i‘.e., table design that balances its schema
between well-structured and semi-structured data sets.

III. OVERVIEW & PROBLEM DEFINITION

Overview. In general, two modules exist outside the
database engine to handle RDF data and queries: (1) an RDF
import module, and (2) an RDF query module. Our proposed
data-centric schema creation technique exists inside the RDF
import module. The schema creation process takes as input an
RDF data set. The output of our technique is a schema (i.e., a
set of relational tables) used to store the imported RDF data
in the underlying DBMS.

Problem Definition. Given a data set of RDF triples,
generate a relational table schema that achieves the following
criteria. (1) Maximize the likelihood that queries will access
properties in the same table without causing a join and
(2) Minimize the amount of unnecessary data processing by
reducing extra data storage (e.g., null storage).

Join operations along with extra table accesses produce a
large query processing overhead in relational databases. Our
schema creation method aims to achieve thefirst criterion by
explicitly aiming to maximizethe amount RDF data stored
togetherin n-ary tables. However, as we saw in the example
given in Figure 1, n-ary tables can lead to extra storage that
affects query processing. Thus, our schema creation method
aims to achieve thesecondcriterion by keeping thenull
storagein each tablebelowa given threshold.

IV. DATA -CENTRIC SCHEMA CREATION

The intuition behind our approach is that different RDF
data sets require different storage structures. For example,
a relatively well-structured RDF data set (i.e., data where
the majority of relevant RDF properties are defined for the

3

Property Usage

P1 1000

P2 500

P3 700

P4 750

P5 450

P6 450

P7 300

P8 350

P9 50

NullPercentage({P1, P2, P3, P4}) = 21%

NullPercentage({P1,P2,P5, P6}) = 32%

NullPercentage({P7, P8}) = 4%

Tables = {P1,P3,P4}, {P2,P5,P6},

 {P7,P8}, {P9}
(a)

PC: {P1, P2, P3, P4} (54% Support)

{P1, P2, P5, P6} (45% Support)

{P7, P8} (30% Support)

(b)

(c)

(e)

NullPercentage({P1, P3, P4}) = 13%

NullPercentage({P2,P5, P6}) = 5%
(d)

Fig. 2. RDF Data Partitioning Example

subjects) may require a few large n-ary tables. Asemi-
structured data set (i.e., data that does not follow a fixed
pattern for property definition) may use a large number of
binary tables as its primary storage schema.

A. Algorithm Overview and Data Structures

Our schema creation algorithm takes as parameters an RDF
data set, along with two numerical values:support threshold
and null threshold. Support thresholdis a value used to
measure strength of correlation between properties in the RDF
data. If a set of properties meets this threshold, they are
candidates to exist in the same n-ary table. Thenull threshold
is the percentage of null storage tolerated for each table inthe
schema.

The data structures for our algorithm are built using an O(n)
process that scans the RDF triples once (wheren is the number
of RDF triples). We maintain two data structures: (1)Property
usage list.This is a list structure that stores, for each property
defined in the RDF data set, the count of subjects that have
that property defined. For example, if a property usage list
were built for the data in Figure 1(a), the propertyWebsite
would have a usage count of one, as it is only defined for the
subjectPerson1. Likewise, theNameproperty would have a
usage count of four, andPopulationwould have a count of two.
(2) Subject-property baskets.This is a list of all RDF subjects
mapped to their associated properties (i.e., a property basket).
A single entry in the subject-property basket structure takes
the formsubjId → {prop1, · · · , propn}, wheresubjId is the
Uniform Resource Identifier of an RDF subject and its prop-
erty basket is the list of all properties defined for that subject.
As an example, for the sample data in Figure 1(a), six baskets
would be created by this process:Person1 → {Name, Website},

Person2 → {Name}, Person3 → {Name}, Person4 → {Name},

City1→ {Population}, City2→ {Population}.
Our schema creation algorithm involves two phases:clus-

tering and partitioning. The clusteringphase (Phase I) aims
to find groups of related properties in the data set using
thesupport thresholdparameter. Clustering leverages previous
work from association rule mining to find related propertiesin
the data. The idea behind the clustering phase is that properties
contained in the clusters should be stored in the same n-ary
table. The canonical argument for n-ary tables is that related
properties are likely to be queried together. Thus, storing
related properties together in a single table will reduce the

number of joins during query execution. The clustering phase
also creates an initial set of final tables. These initial tables
consist of the properties that arenot found in the generated
clusters (thus being stored in binary tables) and the property
clusters that donot need partitioning (i.e., in Phase II). The
partitioning phase (Phase II) takes the clusters from Phase
I and ensures that they contain adisjoint set of properties
while keeping the null storage for each cluster below a given
threshold. The final schema is the union of tables created from
Phase I and II.

B. Phase I: Clustering

The clustering phase involves two steps.Step 1:A set of
clusters (i.e., related properties) are found by leveraging the
use of frequent itemsetfinding, a method used in association
rule mining [25]. For our purposes, the termsfrequent itemsets
and clusters are used synonymously. Theclustering phase
finds groups of properties that are foundoften in the subject-
property basketdata structure. The measure of how often
a cluster occurs is called itssupport. Clusters with high
support implymanyRDF subjects haveall of the properties
in the cluster defined. In other words, high support implies
that properties in a cluster arerelated since they often exist
together in the data. The metric for high support is set by
the support threshold parameter to our algorithm, meaning we
consider a group of properties to be a clusteronly if they
have support greater than or equal to the support threshold.
If we specify ahigh support threshold, the clustering phase
will produce a small number of small clusters with highly
correlated properties. Forlow support threshold, the clustering
phase will produce a greater number of large clusters, with
less-correlated properties. Also, for our purposes, we are
only concerned withmaximum sizedcluster (or maximum
frequent itemsets); these are the clusters that occur often in the
dataand contain themostproperties, meaning we maximize
the data stored in n-ary tables. It is important to note that
maximum frequent itemset generation can produce clusters
with overlappingproperties.

Step 2:Construct an initial set of final tables. These tables
contain (1) properties that arenot found in generated clusters
(thus being stored in binary tables) and (2) the property clus-
ters thatmeetthe null threshold and donot contain properties
thatoverlapwith other clusters, thus not necessitating Phase II.
Clusters that are added to the initial final table list areremoved
from the cluster list. The output of theclustering phaseis
a list of initial final tables, and a set of clusters,sorted in
decreasing order by their support value, that will be sent to
the partitioning phase.

Example. Consider an example with a support threshold of
15%, null threshold of 20% for the six subject-property baskets
given in Section IV-A for the data in Figure 1(a). In this case
we have four possible property clusters:{Name}, {Website},
{Population}, and{Name,Website}. The cluster{Name}
occurs in 4 of the 6 property baskets, giving it a support
of 66%, while the cluster{Name,Website} occurs in 1
of 6 property baskets, giving it a support of 16%. In this
case, the{Name,Website} is generated as a cluster, since

4

Algorithm 1 Clustering
1: Function Cluster(Baskets B,Usage PU ,Threshsup,Threshnull)
2: Clusters← GetClusters(B, Threshsup)
3: Tables← properties not in PC /* Binary tables */
4: for all c1 ∈ PC do
5: OK ← false

6: if Null%(c1, PU) ≤ Threshnull then
7: OK ← true

8: for all c2 ∈ PC if c1 ∩ c2 6= φ then OK ← false

9: end if
10: if OK then Tables← Tables ∪ c1; Clusters← Clusters− c1

11: end for
12: return Tables,Clusters

it meets thesupport thresholdand has themost possible
properties. Note the single property{Population} is not
considered a cluster, and would be added to the initial final
table list. Also, Figure 2(b) gives three example clusters along
with their support values, while Figure 2 (c) gives their null
storage values (null storage calculation is covered shortly).
The output of the clustering phase in this example with a
support and null threshold value of 20% would produce an
initial final table list containing{P9} (not contained in a a
cluster) and{P7, P8} (not containing overlapping properties
and meeting the null threshold). The set of output clusters to
be sent to the next phase would contain{P1, P2, P3, P4} and
{P1, P2, P5, P6}.

Algorithm. Algorithm 1 gives the pseudocode for the clus-
tering phase, and takes as parameters the subject-propertybas-
kets (B), the property usage list (PU), the support threshold
(Threshsup), and the null threshold parameter (Threshnull).
Step 1 of the algorithm generates clusters, sorts them by
support value, and stores them in listClusters (Line 1 in
Algorithm 1). This is a direct call to a maximum frequent
itemset algorithm [25], [26].Step 2 of the algorithm is
performed by first setting a listTables to all binary tables
returned from step 1.Tables is then expanded by adding
from list Clustersthe clusters that do not contain overlapping
properties that are below the given null threshold (Lines 1 to 1
in Algorithm 1). Calculation of the null storage for a cluster
c is performed using the property usage listPU . Let |c| be
the number of properties in a cluster, andPU.maxcount(c)
be the maximum property count for a cluster inPU . As an
example, in Figure 2 (b) ifc = {P1, P2, P3, P4}), |c| = 4
and PU.maxcount(c) = 1000 (corresponding toP1). If
PU.count(ci) is the usage count for theith property in c,
the null storage percentagefor c is:

Null%(c) =

∑
∀i∈c

(PU.maxcount(c)− PU.count(ci))

(|c|+ 1) ∗ PU.maxcount(c)

Finally, the algorithm returns the initial final table list and
remaining clusters (Line 1 in Algorithm 1).

C. Phase II: Partitioning

The objective of thepartitioning phase is twofold: (1) Par-
titioning the given clusters (from Phase I) into a set of
non-overlapping clusters (i.e., a property exists in asingle
n-ary table). Ensuring that a property exists in a single
cluster reduces the number of table accesses and unions
necessary in query processing. For example, consider two

possible n-ary tables storing RDF data for publications:
TitleConf = {subj, title, conference} and TitleJourn =
{subj, title, journal}. An RDF query asking for all published
titles would involve two table accesses and a union, since titles
exist in both the conference and journal tables. (2) Ensuring
that each partitioned cluster, falls below the null storage
threshold. Reducing null storage tunes the schema for efficient
query processing.

We propose a greedy algorithm that attempts to keep the
cluster with highest support intact, whilepruning lower-
support clusters containing overlapping properties. The intu-
ition behind the greedy approach is that clusters withhighest
support contain properties that occur togethermost oftenin
the RDF data. Support is the percentage of RDF subjects
that haveall of the cluster’s properties. Keeping high support
clusters intact implies that the most RDF subjects (with the
cluster’s properties defined) will be stored together in the
table. Our greedy approach continually considers thehighest
support cluster, and handles two cases based on its null storage
computation (from Section IV-B).Case 1: the cluster meets
the null storage threshold, meaning the given cluster from
Phase I meets the null threshold but contains overlapping
properties. In this case, the cluster is considered a table and all
lower-support clusters with overlapping properties are pruned
(i.e., the overlapping properties are removed from these lower-
support clusters). We note that pruning will likely createover-
lappingcluster fragments; these are clusters that areno longer
maximum sized (i.e.,maximum frequentitemsets) and contain
similar properties. To illustrate, consider a list of threeclusters
c1 = {A,B,C,D}, c2 = {A,B,E, F}, and c3 = {C,E}
such thatsupport(c1) > support(c2) > support(c3).
Since our greedy approach choosesc1 as a final table, pruning
creates overlapping cluster fragmentsc2 = {E,F} and c3 =
{E}. In this case sincec3 ⊆ c2, these clusters can becombined
during the pruning step. Thus, wemerge any overlapping
fragments in the cluster list.Case 2: the cluster doesnot meet
the null storage threshold. Thus, it ispartitioneduntil it meets
the null storage threshold. Thepartitioning process repeatedly
removes the propertyp from the cluster that causes themost
null storage until it meets the null threshold. Removingp

maximally reduces the null storage in one iteration. Further,
support for clusters ismonotonic: given two clustersc1 and
c2, c1 ⊆ c2 ⇐ support(c1) ≥ support(c2). Thus, the
partitioned cluster will still meet the given support threshold.
After removingp, two cases are considered.Case 2a: p exists
in a lower-support cluster. Thus,p has a chance of being kept
in a n-ray table.Case 2b: p doesnot exist in a lower-support
cluster. This is the worst case, asp must be stored in a binary
table. Once the cluster is partitioned to meet the null threshold,
it is considered a table and all lower-support clusters with
overlapping properties are pruned.

Example. From our running example in Figure 2,
two clusters would be passed to the partitioning phase:
{P1, P2, P3, P4} and {P1, P2, P5, P6}. The cluster
{P1, P2, P3, P4} has the highest support value (as given
in Figure 2 (b)), thus it is handled first. Since this cluster
does not meet the null threshold (as given in Figure 2 (c))
the cluster is partitioned (Case 2) by removing the property

5

Algorithm 2 Partition Clusters
1: Function Partition(PropClust C,PropUsage PU ,Threshnull)
2: Tables← φ

3: for all clust1 ∈ C do
4: C ← (C − clust1)
5: if Null%(clust1, PU) > NullThresh then
6: repeat
7: p← property causing most null storage
8: clust1 ← (clust1 − p)
9: if p exists in lower-support clusterdo continue

10: elseTables← Tables ∪ p /* Binary table */
11: until Null%(clust1, PU) ≤ NullThresh

12: end if
13: Tables← Tables ∪ clust1
14: forall clust2 ∈ C do clust2 ← clust2 − (clust2 ∩ clust1)
15: Merge cluster fragments
16: end for
17: return Tables

that causes the most null storage,P2, corresponding to the
property with minimum usage in theproperty usagelist in
Figure 2 (a). SinceP2 is found in the lower-support cluster
{P1, P2, P5, P6} (Case 2a), it has a chance of being kept in
an n-ary table. RemovingP2 from {P1, P2, P3, P4} creates
the cluster{P1, P3, P4} that falls below the null threshold
of 20% (as given in Figure 2 (d)), thus it is considered
a final table. Since{P1, P3, P4} and {P1, P2, P5, P6}
contain overlapping properties,P1 is then pruned from
{P1, P2, P5, P6}, creating cluster {P2, P5, P6}. Since
cluster{P2, P5, P6} also falls below the null threshold (as
given in Figure 2 (d)), it would be added to the final table
list in the next iteration. Finally, Figure 2 (e) gives the final
schema with the union of tables returned from both phases.

Algorithm. Algorithm 2 gives the psuedocode for the
partitioning phase, taking as arguments the list of property
clusters (C) from Phase I, sorted in decreasing order by
support value, theproperty usagelist (PU), and the null
threshold value (Threshnull). The algorithm first initializes
the final table listTables to empty (Line 2 in Algorithm 2).
Next, it traverses each property clusterclust1 in list C, starting
at the cluster with highest support (Line 2 in Algorithm 2).
Next, clust1 is removed from the cluster listC (Line 2 in
Algorithm 2). The algorithm then checks thatclust1 meets
the null storage threshold (Line 2 in Algorithm 2). If this is
the case, it considersclust1 a final table (i.e.,Case 1), and
all lower-support clusters with properties overlappingclust1
are pruned and cluster fragments are merged. (Lines 2 to 2
in Algorithm 2). If clust1 does not meet the null threshold,
it must be partitioned (i.e.,Case 2). The algorithm finds
propertyp causing maximum storage inclust1 (corresponding
to the minimum usage count forclust1 in PU) and removes
it. (Lines 2 and 2 in Algorithm 2). Ifp exists in a lower-
support cluster (i.e.,Case 2a), iteration continues, otherwise
(i.e., Case 2b) p is added toTables as a binary table (Lines 2
and 2 in Algorithm 2). Partitioning continues untilclust1
meets the null storage threshold (Line 2 in Algorithm 2).
When partitioning finishes, the algorithm considersclust1 a
final table, and prunes all lower-support clusters of properties
overlapping withclust1 while merging any cluster fragments
(Lines 2 to 2 in Algorithm 2).

<Book1, Auth, Smith>

<Book1, Auth, Jones>

<Book1, Date, 1998>

(a) RDF Triples

Auth.

Smith

Subj

Book1

Author & Date

JonesBook1

Date

1998

1998

(b) N-ary Table

Auth.

Smith

Subj

Book1

Author

JonesBook1

Date

1998

Subj

Book1

Date

(c) Binary Tables

Prop 1 (rf=1)

Null

Prop 2 (rf=2) Prop 3 (rf=2)

Null

Tier 1

Tier 2

Tier 3

redundant 4x

redundant 2x

not redundant

(d) Null Calculation

Fig. 3. Multi-Valued Attribute Example

V. I MPORTANT RDF CASES

We now outline two cases for RDF data important to schema
creation. The first case deals with storage ofmulti-valued
properties. The second case coversrefification.

A. Multi-Valued Properties

Thus far, onlysingle-valuedproperties have been considered
for storage in n-ary tables. We now propose a method to
handlemulti-valuedproperties in our framework. For example,
Figure 3(b) gives an example of a multi-valued propertydata
for the RDf triples in Figure 3(a). Each property is assigned
a redundancy factor(rf), a measure of repetitionper subject
in the RDF data set. IfNb is the total number of subject-
property baskets, theredundancy factorfor a propertyp is
computed asrf = PU.count(p)

support(p)×Nb
. The termPU.count(p) is a

count of theactualproperty usage in a data set, while the term
support(p) × Nb is the usage count of a property if it were
single-valued. We note that the property usage table (PU)
stores the usage count (including redundancy) of each property
in the data set (e.g., in Figure 3(a),PU.count(auth) = 2
andPU.count(date) = 1), while the subject-property basket
stores a property defined for a subject onlyonce (e.g., in
Figure 3(a) the basket isbook1 → {auth, date}). For the
data in Figure 3(a), therf value for auth is 2 (2

1×1), while
for date it is 1 (1

1×1). To control redundancy, a user can
define aredundancy threshold, that defines the maximumrf
value a property can have in order to qualify for storage in
an n-ary table. Therf values multiply each other, thus if
two multi-valued properties are stored in an n-ary table, the
amount of redundancy isrf1×rf2. Propertiesnot meeting the
threshold are explicitly disqualified from theclustering and
partitioning phases, and stored in a binary table. The example
given in Figure 3(c) stores theauth property in a separate
binary table, removing redundant storage of thedateproperty.
If the redundancy thresholdis 1, multi-valued properties are
not stored in n-ary tables.

If multi-valued properties are allowed, null calculation (Sec-
tion IV-B) changes. Due to space constraints, we outline how
the calculation changes using the example in Figure 3(d),
whereProp 1 is single-valued (withrf = 1), while Prop 2
and Prop 3 are multi-valued (withrf = 2). The shaded
columns of the table represent the property usage for each
property if they weresingle valued(as calculated in therf
equation). Using these usage values, the initial null storage

6

Enzyme1Protein1

False

Enzyme

Certain

(a) Reification Graph

Reification Table

Prop. CertainObj.Subj.Subj.

Enzyme FalseEnzyme1Protein1reifID1

Reification Triples

<reifID1, Subj, Protein1>

<reifID1, Prop, Enzyme>

<reifID1, Obj, Enzyme1>

<reifID1, Certain, False>

(b) Reification Table

Fig. 4. Reification Example

value for a table can be calculated as discussed in Sec-
tion IV-B. However, the final calculation must account for
redundancy. In Figure 3(d), the table displays threeredundancy
tiers. Tier 1 represents rows with all three properties defined,
thus having a redundancy of 4 (therf multiplication for
Prop 2 andProp 3). Tier 2 has a redundancy of 2 (therf
for Prop 2). Thus, the repeated null values for theProp 3
column must be calculated.Tier 3 does not have redundancy
(due to therf value of 1 forProp 1).

B. Reification

Reification is an RDF property that allowsstatementsto
be made about other RDFstatements. An example of reifi-
cation is given in Figure 4, taken from the Uniprot protein
annotation data set [6]. The graph form of reification is
given in Figure 4(a), while the RDF triple format is given
at the top of Figure 4(b). The Uniprot RDF data stores
for each< protein,Enzyme, enzyme > triple information
about whether the relationship between protein and enzyme
has been verified to exist. This information is modeled by
the Certain property, attached as a vertex to the whole
< protein,Enzyme, enzyme > triple for the graph repre-
sentation in Figure 4(a). The only viable method to represent
such information in RDF is to first create a new subject ID
for the reification statement (e.g.,reifID1 in Figure 4(b)).
Next, thesubject, property, andobjectof the reified statement
are redefined. Finally, the property and object are defined for
the reification statement (e.g.,certain and false, respectively,
in Figure 4(b)). We mentionreification as our data-centric
method greatly helps query processing over this structure.
Notice that for reification a set of atleast four properties
must always exist together in the data. Thus, our schema
creation method willcluster these properties together in an n-
ary table, as given in Figure 4(b). Our framework also makes
an exception to allow reification propertiessubject, property,
andobjectto exist in multiple n-ary tables for each reification
edge. This exception means that a separate n-ary table will
be created for each reification edge in the RDF data (e.g.,
Certain in figure Figure 4), Section VI will experimentally
test this claim over the real-world Uniprot [6] data set.

VI. EXPERIMENTS

This section experimentally evaluates our RDF schema
creation approach with existing RDF storage methods.

A. Experimental Setup

We use three real-world data sets in our experiments:
DBLP [16], DBPedia [17], and Uniprot [6]. All data sets

Statistic Uniprot

Total Properties 86

% total props stored in binary tables 69%

% total props stored in n-ary tables 31%

DBPedia

19K

99.59%

0.41%

DBLP

30

40%

60%

Min rf value for multi-val properties 1.2

% multi-val prop stored in n-ary tables 17%

4

0%

3.4

0%

Multi-Val Properties 3560804

(a) Schema Breakdown

Data Set 3-ary

DBLP 2

DBPedia 8

Uniprot 4

Binary

12

18922

60

4-ary

6

6

9

5-ary

4

8

8

(6+)-ary

6

56

5

Total

30

19K

86

(b) Table Distribution (by Property)

Fig. 5. Data Centric Schema Tables

contain more than 10M triples; specific details for these data
can be found in our companion technical report [27]. To create
data-centric tables, thesupport parameter was set to 1% (a
generally accepted default value [28]), the null thresholdvalue
was set to 30%, and the redundancy threshold was set to
1.5. Figure 5(a) gives the breakdown of the percentage of
all properties for each data set that are stored in n-ary tables
or binary tables (rows 1-3). This table gives the number of
multi-valued properties in each data set (row 4), along withthe
minimumredundancy factor from all these properties (row 5).
Only the Uniprot data set had multi-valued properties that met
the redundancy threshold of 1.5, thus six of these properties
(17%) were kept in n-ary tables (row 6). Figure 5(b) gives the
table type (binary or n-ary) and the distribution of properties
stored in each table type.

The experimental machine used is a 64-bit, 3.0 GHz Pen-
tium IV, running Ubuntu Linux with 4Gbytes of memory.
Our schema creation module was built using C++, and inte-
grated with the PostgreSQL 8.0.3 database. We implemented
a triple-storesimilar to many RDF storage applications (e.g.,
see [7], [9], [11], [12]), which is a single table containing
three columns corresponding to an RDF subject, property, and
object. We implemented the decomposed storagemethod by
allowing each table to correspond to a unique property in the
RDF dataset. Our data-centric approachbuilt both n-ary and
binary tables according to the structure of each data set. In-
depth implementation details (e.g., indexing) are found inour
companion technical report [27].

B. Experimental Evaluation

This section provides performance numbers for a set of
queries based on previous benchmarks for Uniprot [10] and
DBPedia [29]. Since the benchmarks were originally designed
for their respective data, we first generalize the query in terms
of its signature, then give the specific query for each data
set. For each query, Figure 6 gives the query runtimes (in
seconds) for each of the three storage approaches: triple-store,
decomposed storage model (DSM), and our proposed data-
centric approach. All times given are the average of ten runs,
with the cache cleared between runs.

1) Query 1: Predetermined props/all subjects:Query 1
(Figure 6(a)) asks about a predetermined set of RDF proper-
ties. The general signature of this query is to selectall records

7

DBLP DBpedia Uniprot

Triple-Store 105.56 81.01 72.61
DSM 59.15 0.02 23.92
Data-Centric 1.61 0.002 18.99

0

22

44

66

88

110

R
u

n
ti

m
e

 (s
e

c
)

(a) Query 1

DBLP DBpedia Uniprot

Triple-Store 10.424 5.596 15.517
DSM 8.837 0.025 5.387
Data-Centric 8.068 0.002 3.749

0
2
4
6
8

10
12
14
16

R
u

n
ti

m
e

 (s
e

c
)

(b) Query 2

DBLP DBpedia Uniprot

Triple-Store 47.49 10.24 38.82
DSM 40.31 2.24 9.38
Data-Centric 1.91 2.12 2.95

0

10

20

30

40

50

R
u

n
ti

m
e

 (s
e

c
)

(c) Query 3

DBLP DBpedia Uniprot

Triple-Store 72.53 5.53 41.01
DSM 7.97 0.04 8.84
Data-Centric 4.46 0.04 4.71

0

15

30

45

60

75

R
u

n
ti

m
e

 (s
e

c
)

(d) Query 4

Triple-Store DSM Data-
Centric

Uniprot 51.74 26.22 4.96

0

11

22

33

44

55

R
u

n
ti

m
e

 (s
e

c
)

(e) Query 5

Fig. 6. Queries

for which certain properties are defined. For specific data set
queries (along with SQL), the reader is encouraged to see
our companion technical report [27]. Overall, the data-centric
approach shows better relative runtime performance for Query
1. Interestingly, the data-centric approach showed a factor of
65 speedup over the triple-store for the DBLP query, and
a factor of 36 speedup over the decomposed approach. The
DBLP data is relatively well-structured, thus, our data-centric
approach stores a large number of properties in n-ary tables. In
fact, the data-centric approach involved a single table access
and no joins, while the triple-store and decomposed approach
both used six table accesses and five self-joins. Similarly,the
data-centric approach shows modest speedup for the DBPedia
and Uniprot data sets again due to the decreased table accesses
and joins. For instance the data-centric approach requiredfive
table accesses in the Uniprot query and four subject-to-subject
joins, compared to six table accesses and five joins for the
triple-store and decomposed approaches.

2) Query 2: Single subject/all defined properties:Query
2 (Figure 6(b)) involves a selection of all defined properties
for a single RDF subject (i.e., a single record). For specific
data set queries (along with SQL), the reader is encouraged
to see our companion technical report [27]. For DBLP, this
query accesses 13 RDF properties. The decomposed and triple-
store approach involved 13 table accesses, while the data-
centric approach involved nine. The performance between the
decomposed and our data-centric approaches is similar in this
case, due to the fact that some tables in the data-centric ap-
proach containedextraneousproperties, meaning some stored
properties were not used in the query. For DBPedia, the query
accesses 23 RDF properties. The data-centric and decomposed
approaches exhibit a similar relative performance to the triple-
store with sub-second runtimes. However, the data-centricap-
proach accessed a total of 17 tables, compared to the 23 needed
by the decomposed and triple-store approaches. For Uniprot,
this query accesses 15 RDF properties. The decomposed and
triple-store approach involved fifteen table accesses along with
fourteen subject-to-subject joins. Meanwhile, the data-centric
approach involved 11 table accesses generating 10 subject-to-
subject joins.

3) Query 3: Administrative query:Query 3 (Figure 6(c))
is an administrative query asking about date ranges for a
set of recently modified RDF subjects in the data set. The
general signature of this query is a range selection over dates.
For specific data set queries (along with SQL), the reader is
encouraged to see our companion technical report [27]. The
data-centric approach shows better relative performance to that
of the other schema approaches. Again, for the well-structured

DBLP data, data-centric approach stored all query properties
in a single table, causing a factor of 24 speedup over the
triple-store, and a factor of 21 speedup over the decomposed
approach. This performance is due to the data-centric approach
requiring a single table access, with all five queried properties
clustered to a single table. Meanwhile, both the the triple-store
and decomposed approaches required separate table accesses
for the range query and joins. The data-centric approach also
shows good speedup for the semi-structured Uniprot data.

4) Query 4: Predetermined props/spec subjects:Query 4
(Figure 6(d))retrieves a specific set of properties for a particu-
lar set of RDF subjects. The general signature of this query is
a selection of a set of RDF subjects (using the IN operator).
For specific data set queries (along with SQL), the reader is
encouraged to see our companion technical report [27]. Again,
the data-centric approach shows better overall performance
to that of the other schema approaches. For the Uniprot and
DBLP, the data-centric approach shows good speedup over the
triple-store, and a 1.8 speedup over the decomposed approach.
The data-centric approach required only two table accesses
and one join for the Uniprot data, and a single table access
for the DBLP data, compared to four and five table accesses,
respectively, for the other storage methods. The performance
was similar for the data-centric and decomposed methods over
the DBPedia data, as both queries accessed all binary tables.

5) Query 5: Reification:Query 5 (Figure 6(e)) involves
a query using reification. For this query, only the Uniprot
data set is tested, as it is the only experimental data set that
makes use of reification. The query here is todisplay the top
hit count for statements made about proteins. In the Uniprot
dataset, this information is stored as reified data with the the
object property corresponding to a protein identifier, and the
hit count modeled as thehits property. The large difference in
performance numbers here is mainly due to the table accesses
needed by both the decomposed and triple-store to reconstruct
the statements used for reification. Our data-centric approach
involved a single table access with no joins, due to the fact
that the reification structure being clustered together in n-ary
tables. Our approach shows a speedup of 5.29 and 10.44 over
the decomposed and triple-store approaches.

6) Relative Speedup:Figure 7(a) gives the relative speedup
for the data-centric approach over the triple-store approach for
each query and data set, while Figure 7(b) gives the same
speedup data over the decomposed approach. The DBLP data
set is well-structured, and ourdata centricapproach showed
superior speedup for queries 1 and 3 over the DBLP data
as it clusteredall related data to the same table. Thus, the
queries were answered with a single table access, compared to
multiple accesses and joins for the triple-store and decomposed

8

DBLP DBPedia Uniprot

Query1 65.60 50,256.41 3.82
Query2 1.29 3,410.31 4.14
Query3 24.89 4.83 13.16
Query4 16.25 140.28 8.71
Query 5 0 0 10.44

1

100

10,000

S
p

ee
d

up
 (l

o
g

)

(a) Speedup over Triple Store

DBLP DBPedia Uniprot

Query1 36.76 14.00 1.26
Query2 1.10 15.13 1.44
Query3 21.13 1.06 3.18
Query4 1.79 1.01 1.88
Query5 0 0 5.29

1

100

10,000

S
p

ee
d

up
 (l

o
g

)
(b) Speedup over DSM

Fig. 7. Relative Speedup

approaches. For DBPedia queries 1 and 2, the data-centric
approach showed speedup over the decomposed approach
due to accessing the few n-ary tables present to store this
data. However, this data was mostly semi-structured, thus
queries 3 and 4 showed similar performance as they involved
the same table structure. The speedup over the triple-store
for DBPedia was superior as queries using the data-centric
approach involved tables (1) with smaller cardinality and
(2) containing, on average, only the properties necessary to an-
swer the queries, as opposed to the high-selectivity joins used
by the large triple-store. Our data-centric approach showed a
moderate speedup performance for the Uniprot queries due
to two main factors: (1) some data-centric tables contained
extraneous properties and multi-valued attributes that caused
redundancy, and (2) the semi-structured nature of the Uniprot
data set led to a similar number of relative joins and table
accesses.

VII. C ONCLUSION

This paper proposed a data-centric schema creation ap-
proach for storing RDF data in relational databases. Our
approach derives a basicstructurefrom RDF data and achieves
a good balance between using n-ary tables (i.e.,property
tables) and binary tables (i.e.,decomposed storage) to tune
RDF storage for efficient query processing. First, aclustering
phase finds all related properties in the data set that are
candidates to be stored together. Second, the clusters are sent
to a partitioning phase to optimize for storage of extra data
in the underlying database. We compared our data-centric
approach with state-of-the art approaches for RDF storage,
namely thetriple storeanddecomposed storage, using queries
over three real-world data sets. The data-centric approach
shows large orders of magnitude performance improvement
over the triple store, and speedup factors of up to 36 over the
decomposed approach.

REFERENCES

[1] “World Wide Web Consortium (W3C): http://www.w3c.org.”
[2] “W3C Semantic Web Activity: http://www.w3.org/2001/sw/.”
[3] D. Kotzinos, S. Pediaditaki, A. Apostolidis, N. Athanasis, and

V. Christophides, “Online curriculum on the semantic Web: the CSD-
UoC portal for peer-to-peer e-learning,” inWWW, 2005.

[4] J. S. Jeon and G. J. Lee, “Development of a Semantic Web BasedMobile
Local Search System,” inWWW, 2007.

[5] X. Wu, L. Zhang, and Y. Yu, “Exploring social annotationsfor the
semantic web,” inWWW, 2006.

[6] “Uniprot RDF Data Set: http://dev.isb-sib.ch/projects/uniprot-rdf/.”
[7] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and

K. Tolle, “The ICS-FORTH RDFSuite: Managing Voluminous RDF
Description Bases,” inSemWeb, 2001.

[8] D. Beckett, “The Design and Implementation of the Redland RDF
Application Framework,” inWWW, 2001.

[9] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema,” inISWC,
2002.

[10] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan, “An Efficient SQL-
based RDF Querying Scheme,” inVLDB, 2005.

[11] S. Harris and N. Gibbins, “3store: Efficient bulk rdf storage,” in PSSS,
2003.

[12] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “Rstar: an rdf storage and
query system for enterprise resource management,” inCIKM, 2004.

[13] K. Wilkinson, “Jena Property Table Implementation,” inSSWS, 2006.
[14] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F. Naughton,

“Extending rdbmss to support sparse datasets using an interpreted
attribute storage format,” inICDE, 2006.

[15] D. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable
Semantic Web Data Management Using Vertical Partitioning,” in VLDB,
2007.

[16] B. Aleman-Meza, F. Hakimpour, I. B. Arpinar, and A. P. Sheth,
“Swetodblp ontology of computer science publications,”Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 5, no. 3, pp.
151–155, 2007.

[17] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,and Z. Ives,
“DBpedia: A Nucleus for a Web of Open Data,” inISWC, 2007.

[18] G. P. Copeland and S. N. Khoshafian, “A Decomposition Storage
Model,” in SIGMOD, 1985.

[19] A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura, “A Path-Based
Relational RDF Database,” inADC, 2005.

[20] R. Angles and C. Gutierrez, “Querying rdf data from a graph database
perspective,” inESWC, 2005.

[21] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection
of materialized views and indexes in sql databases,” inVLDB, 2000.

[22] S. Agrawal, V. R. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design,” in
SIGMOD, 2004.

[23] S. B. Navathe and M. Ra, “Vertical partitioning for database design: A
graphical algorithm,” inSIGMOD, 1989.

[24] S. Papadomanolakis and A. Ailamaki, “Autopart: Automating schema
design for large scientific databases using data partitioning,” in SSDBM,
2004.

[25] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in VLDB, 1994.

[26] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A Maximal Frequent
Itemset Algorithm for Transactional Databases,” inICDE, 2001.

[27] J. J. Levandoski and M. F. Mokbel, “RDF Data-Centric Storage,”
University of Minnesota, Tech. Rep. UM-CS-TR-9999, 2009.

[28] R. Agrawal and J. Kiernan, “An Access Structure for Generalized
Transitive Closure Queries,” inICDE, 1993.

[29] “RDF Store Benchmarks with DBpedia:
http://www4.wiwiss.fu-berlin.de/benchmarks-200801/.”

