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Abstract— Preference queries are essential to a wide spectrum
of applications including multi-criteria decision-making tools and
personalizeddatabases. Unfortunately, most of the evaluation
techniques for preference queries assume that the set of preferred
attributes are stored in only one relation, waiving on a wideset
of queries that include preference computations over multiple
relations. This paper presentsPrefJoin, an efficient preference-
aware join query operator, designed specifically to deal with
preference queries over multiple relations.PrefJoin consists of
four main phases:Local Pruning, Data Preparation, Joining, and
Refining that discard irrelevant tuple from the input relations,
prepare tuples for next phases, joins non-pruned objects, and
refine the join result respectively. PrefJoin supports a variety
of preference function including skyline, multi-objective and k-
dominance preference queries. An interesting characteristic of
PrefJoin is that it is tightly integrating with join hence we can
early prune join only those tuples that are guaranteed not tobe an
answer, and hence it saves significant unnecessary computations
cost. We show the correctness ofPrefJoin. Experimental evalu-
ation based on a real system implementation inside PostgreSQL
shows thatPrefJoin consistently achieves from one to three orders
of magnitude performance gain over its competitors in various
scenarios.

I. I NTRODUCTION

Preference queries are essential to a wide spectrum of
applications including multi-criteria decision-making tools and
personalized databases [15], [17]. Several preference functions
have been proposed in the literature includingtop-k [7], sky-
lines[3], multi-objective[2], k-dominance[5], k-frequency[6],
and ranked skylines[18]. Given a set of multi-dimensional
objects, preference queries find a set of interesting objects,
i.e., objects that are preferred to the user according to some
preference function. An example preference query is“find
my best restaurants based on my preferences”where user
preferences for a restaurant can be minimal price and minimal
distance.

Most of the research efforts for the preference query evalu-
ation are designed to compute the preference set over a single
relation (e.g., see [1], [3], [4], [7], [8], [10], [16], [18], [23],
[32]). Unfortunately, such work can not be directly appliedto
a wide spectrum of preference applications and queries where
the preferred attributes are stored in more than one relation.
Consider, for example, a scenario where a user is looking for
a hotel and a cruise in the same location. User preferences for
the hotel are lower price, better rating, and closer to the beach
and for the cruise are lower price, better rating, and shorter
stay. Figure 1a gives information about hotels and cruises,
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Fig. 1. Motivating Example

stored in relationsHotelsandCruises, respectively. Assuming
minimum rating is better, this user preference request can be
represented by the following SQL query:

SELECT * from Hotels h, Cruises c
WHERE c.location = h.location
PREFERENCE h.price(min), h.rating(min),
h.beach_dist (min), c.price(min), c.rating(min),
c.days(min)

To answer this SQL query using existing single-table pref-
erence techniques, we first need to join the two input relations
(i.e., Hotels and Cruises), and then apply the preference
query algorithm on the joined relation based on the location
attribute, i.e.,Pref (Hotels 1location Cruises). Figure 1b
shows such a query plan. Unfortunately, such an approach
is very inefficient as it completely isolates the preference
functionality from the join operator. As a result, the join
operation will produce too many tuples that have no chance
of being preferred objects. Another approach is to push the
single-relation preference operationPref before the join
operator, as depicted in the query plan in Figure 1c. However,
this is simply incorrect as the preference is not distribu-
tive over the join, i.e.,Pref (Hotels 1location Cruises)
6= Pref(Hotels)1locationPref(Cruises). For example, in
Figure 1, if the preference function is a skyline query, the
hotel represented by tuple(2,Miami,4,2,3) is dominated
by hotel (6,Hawaii,2,2,2), hence it would not proceed to



the join operator. Similarly, cruise(3,Miami,5,3,1) is domi-
nated by cruise(11,Seattle,4,3,1). However, the joined tuple
(2,Miami,4,2,3, 3,Miami,5,3,1) is not dominated by any
other tuples and hence, it is a valid answer for the SQL query.
Note that this query plan can be correct only when the join is
a cartesian product.

Very recently, few research efforts have started to address
preference queries over multiple relations [13], [14], [19], [25],
however such work either focuses on only the skyline prefer-
ence function [13], [14], [25] or provides a preliminary generic
solution for a first cut generic preference query engine with
no particular focus on the join operation [19]. Furthermore,
two of these research efforts about skyline queries are mainly
relying on the existence of index structures and are geared
towards generating progressive results [14], [25].

In this paper, we proposePrefJoin; an efficient preference-
aware join query operator.PrefJoin is generic for a wide
variety of preference functions, does not assume the existence
of any index structure, and achieves orders of magnitude per-
formance over previous approaches [13], [19]. The main goal
of PrefJoinis to make the join operation aware of the required
preference functionality, and hence the join operation would be
able to early prune those tuples that have no chance of being
a preferred object without actually doing the join operation.
ThePrefJoinalgorithm consists of four phases, namely,Local
Pruning, Data Preparation, Joining, andRefining. The Local
Pruningphase filters out, from each input relation those tuples
that are guaranteed not to be in the final preference set. The
Data Preparationphase associates meta data with each non-
filtered tuple that will be used to optimize the execution of the
next phase. TheJoiningphase uses that meta data, computed in
the previous phase, to decide on which tuples should be joined
together. Finally, theRefiningphase finds thefinal preference
set from the output of the joining phase.

PrefJoin is presented as a general framework that can
support a wide variety of preference functions, though we only
present three cases in this paper, namely,skyline [3], multi-
objective[2], and k-dominance[5]. Experimental analysis of
PrefJoin, implemented in PostgreSQL [24], shows from two to
three orders of magnitude improvement over existing solutions
[13], [19]. The rest of this paper is organized as follows: Sec-
tion II formulates the problem. Section III highlights related
research efforts. Section IV presents thePrefJoin framework
with three case studies. Section V discusses the effect of
the join order on the performance of the proposed algorithm.
Section VI proves the correctness of the proposed algorithm.
Section VII gives experimental analysis. Finally, SectionVIII
concludes the paper.

II. PROBLEM FORMULATION

Without loss of generality, we assume that all dimension
values have a total order in which smaller values are better.

Problem Formulation. Given: (1) m input relationsR1,
R2, . . . , Rm, (2) Equality join condition overR1 to Rm,
(3) A set of preference attributesP ; such that∀ p ∈ P , ∃ i s.t
p ∈ Ri and∀ Ri, Ri ∩ P 6= φ, and (4) A preference method
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RELATED WORK

M. A preference queryQ finds tuples fromR1 1 R2 1 . . .
Rm, that are preferred with respect toP andM.

Applying this formulation to the SQL query given in
Section I gives: (1) Two input relationsHotels HandCruises
C, (2) The equality join condition isH.location = C.location,
(3) Six preference attributes,H.price, H.rating, H.beachdist,
C.price, C.rating, and C.days, and (4) A skyline preference
method. The SQL query finds those tuples, on the form (HID,
CID, Preference attributes) that are skylines over the six
preference attributes fromH 1 C.

III. R ELATED WORK

Due to their applicability, preference queries have received
great interest ever since their introduction into databases.
Several preference functions have been proposed in the lit-
erature includingskyline[3], [8], [10], [16], [23], [32], multi-
objective [2], k-dominance[5], k-frequency[6], ranked sky-
lines [18], spatial skyline[27], k representative skylines[20],
distance-based dominance[31], ǫ-skyline[33], andtop-k dom-
inance[34]. With the exception of very recent research [13],
[14], [19], [25], all research efforts in preference query pro-
cessing rely on the assumption that all input data reside in
only one relation with no direct extension to support the case
where preference attributes are scattered over more than one
relation. Hence, the only solution is to completely join the
input relations, then apply the preference method on the top
of the join result, which is a very expensive solution.

Table I gives a taxonomy of existing work for preference
queries over multiple relations. For completeness, we consider
a special case of join, whereone relation is presented as a
collection of sorted lists [9]. Each sorted list contains tuples on
the form(id, value) and is sorted based on thevalueattribute.
Table I divides these research efforts with respect to: (a) Query
type (e.g., Top-k join or skyline join), (b) Join condition (e.g.,
a general join condition or key only join), (c) Sorted lists (i.e.,
the input of the query must be in the form of sorted lists), and
(d) Operator.

As it can be seen in the table, existing work for preference
join are Top-K Join for one relation represented as a collection



of sorted list (e.g., [9], [11]), approximate Top-k join in adis-
tributed environment [21], Top-K with general condition join
[12], [22], skyline Join for one relation represented in sorted
manner [30], skyline Join in a centralized environment [13],
[19], skyline Join in a distrusted environment [29], preference
join [19]. Other research efforts [26], [28], not shown in the
table, compute the Top-k join query over uncertain data.

Existing work for multi-preference query processing (i.e.,
no top-k) is limited to the very recent research [13], [14],
[19], [25] (as seen from the table) which either focus on only
the skyline preference function [13], [14], [25] or providea
preliminary generic solution for a general preference query
engine with no particular focus on the join operation [19].
Furthermore, two of these research efforts mainly rely on the
existence of index structures and are geared towards generating
progressive results, turning them not optimized for a full join
result [14], [25]. The two closest works to ours are: (a) global
skyline [13], as it does not require an index structure and not
geared towards progressive results, though it supports only
skyline queries, and (b) FlexPref [19], as it is kind of a
generic solution for a wide variety of preference functions.
Both approaches [13], [19] have similar skeleton functionality
that contains three steps: (1) Computing thelocal preference
set for each input relationRi, (2) Joining local preference
tuples from input relations to findcandidatepreference set,
and (3) Computing the preference function over thecandidate
preference set.

There are two levels to embed the preference queries into
database either in application level as a layer in top of DBMS
or inside the engine. When the operator is implemented inside
the DBMS, the engine is well-aware of the existing of the
operator and generates plans that uses the operator. From the
table the algorithms that are presented as operators are [11]–
[13]. Our proposed algorithmsPrefJoin is implemented as an
operator inside the DBMS engine.

There are two levels to embed the preference queries into
database either in application level as a layer in top of DBMS
or inside the engine. When the operator is implemented inside
the DBMS, the engine is well-aware of the existing of the
operator and generates plans that uses the operator. From the
table the algorithms that are presented as operators are [11]–
[13]. Our proposed algorithmsPrefJoin is implemented as an
operator inside the DBMS engine.

Our proposed approachPrefJoin distinguishes itself from
its competitors [13], [14], [19], [25] as it has the following
characteristics: (1) Unlike [13], [14], [25],PrefJoin is not
limited to skyline queries, but it is generic to support a wide
variety of preference queries; making it suitable for commer-
cial database systems as it requires small code footprints for
various preference functions, (2) Unlike [14], [25],PrefJoin
does not assume the existence of any indexing data structure
making nor geared towards producing progressive output,
insteadPreJoin aims to support basic join queries that still
lack the awareness of various preference functions, (3) On
top of all other approaches,PrefJoin does not only employ
elegant early punning techniques, but also, utilizes some meta
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information about input tuples to early decide whether two
tuples should be joined together. With this, based on actual
implementation inside PostgreSQL,PrefJoin achieves two to
three orders of magnitude better performance over global
skyline [13] for skyline queries and over FLexPref [19] for
skyline, k-dominance, andmulti-objectivequeries.

IV. PREFJOIN: A PREFERENCE-AWARE JOIN OPERATOR

In this section, we present our proposed algorithm,PrefJoin;
an efficient preference-aware join query operator for a wide
variety of preference functions. In particular, we focus, in this
paper, onskyline[3], k-dominance[5] and multi-objective[2]
preference functions. However, other preference functions that
includetop-k dominating[34] andk-frequency[6] can be also
supported. The main goal ofPrefJoin is to make the join
operator aware of the required preference functionality, and
hence the join operation would be able to prune those tuples
that have no chance of being a preferred object with minimal
computational overhead. ThePrefJoin algorithm consists of
four phases, as depicted in Figure 2, namely,Local Pruning,
Data Preparation, Joining, and Refining. These phases use
three preference functionsP local, Ppairwise, andPrefine that
are chosen carefully based onP . Table II gives the choices of
P local, Ppairwise, andPrefine for skyline, k-dominanceand
multi-objectivepreference functions. TheLocal Pruningphase
filters out, usingP local, from each input relation, those tuples
that are guaranteed not to be in the final preference set. The
Data Preparationphase associates meta data with each non-
filtered tuple that will be used to optimize the execution of the
next phase. TheJoining phase uses that meta data, computed
in the previous phase, to decide on which tuples should be
joined together. Finally, theRefiningphase usesPrefine to
find the final preference set from the output of the joining
phase.

Sections IV-A - IV-D discuss the four phases ofPrefJoin
in a generic way that can support a wide variety of prefer-
ence functions. Section IV-E gives the pseudo-code for the
PrefJoin algorithm. Section IV-F gives three case studies of
PrefJoin, namely, skyline, k-dominance, and multi-objective
preference functions. Cost analysis forPrefJoin is presented
in Appendix A.



Skyline [3] K-dominance [5] Multi-objective [2]
P local Skyline Skyline Multi-Objective
Ppairwise Skyline Skyline Multi-Objective
Prefine null K-dominance Multi-objective

TABLE II

SETTING OFP local, Ppairwise , AND Prefine FOR SKYLINE ,
k-DOMINANCE, AND MULTI -OBJECTIVE PREFERENCES

A. Phase I: Local Pruning

Phase I filters out those tuples, from each input relation,
that are guaranteed to be not in the final preference answer.
The output of Phase I, i.e., the set of non-filtered tuples, isthe
local preference setLP(Ri) for each input relationRi, which
is defined as the set of tuples such that each tuplet ∈ LP(Ri)
is a preferred tuple over all tuples inRi with the same join
attributes values. For example, Figure 1a highlights the tuples
in the local preference set, for theHotelsandCruisesrelations
using the skyline preference method and thelocationattribute
as the joining attribute. Phase I has the following two main
steps: (a)Hashing, where Phase I scans each input relation
R and utilizes a hash functionh, based on the equality join
attributes, to hash each tuplet ∈ Ri to its corresponding hash
bucket. For simplicity, we build aseparatehash bucketB for
each value of the equality join attributes. (b)Local preference
computation for each relationRi, where Phase I employs a
preference functionP local over the set of tuples in each hash
bucketB ∈ Ri separately. It is important to note here that
P local does not have to be the same asP , yet the choice of
P local depends onP . For example, per Table II and as will
be detailed in Section IV-F, ifP is a skyline, k-dominance, or
multi-objectivepreference functions,P local would beskyline,
skyline, or multi-objective, respectively.

The main idea of Phase I is that any tuplet ∈ Ri that is not
preferred, with respect toP local, over other tuples inRi with
the same value in the equality join attribute, should be filtered
out as it has no chance of being preferred inRi 1 Rj with
respect toP . As t is not preferred toPlocal, there must be
another tuplet′ in the same hash bucketB of t that is better
thant. This means that when joiningRi with relationRj , the
result oft′ 1 rj , rj ∈ Rj , will be preferred overt 1 rj . Such
early pruning oft saves the overhead of consideringt at later
steps.

B. Phase II: Data Preparation

Phase II takes, as input, the local preference set,LP(Ri),
for each relationRi, produced from Phase I and passes it to
Phase III along with a set of information, termedDominating
hash buckets, DB(t), associated with each tuplet ∈ LP(Ri).
Such information will be used later in Phase III to avoid pro-
ducing unnecessary joined tuples. The main idea of Phase II is
to associate with each local preference tuplet, produced from
Phase I, the set of its dominating hash buckets,DB(t), i.e., the
set of hash buckets inR that contains tuples preferred overt
with respect to preference functionPpairwise. Same asP local,

Ppairwise does not have to be the same asP , yet the choice of
Ppairwise depends onP . For example, per Table II and as will
be detailed in Section IV-F, ifP is a skyline, k-dominance, or
multi-objective, Ppairwise would beskyline, k-dominance, or
skyline, respectively.

For a local preference tuplet of bucketB in relation R,
DB(t) is computed by comparingt with the first tuplet′ of
each hash bucketB′ in relationR, whereB′ 6= B. Three cases
may occur:
• Case 1:t′ is preferred overt with respect toPpairwise. In

this case, we add bucketB′ to DB(t) as this means that
there is a tuple inB′ that is preferred overt. If Ppairwise

is transitive, we guarantee that no other tuples inB can
be preferred overt′, thus no further preference checks
are needed for other tuples inB′. On the other side, if
Ppairwise is not transitive, we proceed to comparet with
the next tuple inB′, and act accordingly based on our
three cases.

• Case 2:t is preferred overt′ with respect toPpairwise.
In this case, we add bucketB to DB(t′) as this means
that there is a tuple inB that is preferred overt′. If
Ppairwise is transitive, we guarantee that no other tuples
in B′ can be preferred overt, thus no further preference
checks are needed for other tuples inB′. On the other
side, ifPpairwise is not transitive, we proceed to compare
t with the next tuple inB′, and act accordingly based on
our three cases.

• Case 3: Neithert is preferred overt′ nor t′ is preferred
over t. In this case, we do not change neitherDB(t) nor
DB(t′). We proceed with next tuple fromB′, and act
accordingly based on our three cases.

C. Phase III: Joining

Phase III takes, as input, the local preference setLP(Ri)
where each tuplet∈LP(Ri) is associated with a set of
dominating hash buckets,DB(t). Phase III usesDB(t) to
decide which local preference tuplesti ∈ LP(Ri) and tj ∈
LP(Rj) should be joined together, to produce thecandidate
preference set, denoted asCandidatepref . This means that by
only consulting the sets of dominating hash buckets, Phase III
is able to decide if the joined tuple is acandidatepreference
tuple or not, rather than performing the join operation followed
by a preference check. Basically, two tuplesr and s from
relationsR andS that satisfy the equality join condition will
be joined together only ifDB(r) ∩ DB(s)=φ. Unlike all other
phases, this phase does not directly depend on the preference
functionP , as it always has the same execution regardless of
P .

For simplicity, we assume two input relationsR and S,
then we extend our ideas to support arbitrary number of
input relations. Consider two local preference tuplesr and
s from corresponding hash bucketB of relationsR and S,
respectively. Two cases may arise:
• Case 1:DB(r) ∩ DB(s)6= φ, i.e., the sets of dominating

hash buckets forr and s are overlapping.In this case,
we are sure that the joined tuplet = r 1 s will not be



preferred, hence, we avoid joiningr ands. To illustrate,
consider bucketB′ ∈ DB(r) ∩ DB(s). There must be
tuple r′ ∈ B′, such thatr′ is preferred overr. Similarly,
there must bes′ ∈ B′, such thats′ is preferred overs.
This means that the tuplet′ = r′ 1 s′ must be preferred
over t=r 1 s.

• Case 2:DB(r) ∩ DB(s)= φ, i.e., the sets of dominating
hash buckets forr and s are disjoint. In this case, the
joined tuplet = r 1 s is acandidatepreference tuple, i.e.,
it is a preferred tuple by separately considering attributes
in relationsR and S. Hence, we perform the join and
produce tuplet.

The same idea is generalized tom input relationsR1, R2

,. . . , Rm, by joining the local preference tuplest1, t2, . . . ,
tm from R1, R2, . . . , Rm only if DB(t1) ∩ DB(t2) ∩ . . .
∩ DB(tm)= φ. Hence, consulting the sets of dominating hash
buckets is sufficient to check if the to be joined tuple is a
candidateanswer for the preference query.

D. Phase IV: Refining

Phase IV takes, as input, thecandidate preference set,
Candidatepref , produced from thejoining phase, and finds
the final preference answer for the preference functionP .
Simply, Phase IV employs a preference functionPrefine over
the set of tuples in the candidate preference set produced from
Phase III. Each tuplet that is preferred with respect toPrefine

is a final preference tuple forP . It is important to note that
Prefine does not have to be the same asP , yet the choice
of Prefine depends onP . Specifically,Prefine is chosen to
apply the preference computations that could not be pushed
before the joining phase. For example, per Table II and as will
be detailed in Section IV-F, ifP is a skyline, k-dominance, or
multi-objective, Prefine would benull, k-dominance, or multi-
objective, respectively.

E. PrefJoin: Pseudocode

Algorithm 1 gives the pseudo code of thePrefJoin algo-
rithm, presented for two relationsR and S, for simplicity.
The input to the algorithm is the two input relationsR and
S along with the three preference functionsPlocal,Ppairwise

and Prefine that are set based on the desired preference
function P , i.e., per Table II forskyline, k-dominance, and
multi-objectivepreference functions. The algorithm starts by
executing Phase I, i.e., building the hash buckets and com-
puting the local preference setsLP(R) andLP(R) for the
input relationsR and S, respectively. This is achieved by
applying the preference functionPlocal over each hash bucket
in both input relations (Lines 3 to 10 in Algorithm 1). Then, we
proceed to Phase II, where we compute the set of dominating
hash bucketsDB(r) for each tupler ∈ LP(R) and DB(s)
for each tuples ∈ LP(S). DB(r) andDB(s) are computed
as the set of hash buckets inR andS that include preferred
tuple(s) overr and s, respectively, with respect toPpairwise

preference function (Lines from 12 to 17 in Algorithm 1).
Then, we proceed to Phase III, as we initialize the candidate
preference set,Candidatepref to be empty. We iterate over

Algorithm 1 PrefJoin
1: Function PrefJoin(Relation R, Relation S,Plocal ,Ppairwise,Prefine)
2: /* Phase I */
3: LP(R) ← φ; LP(S) ← φ

4: Build hash buckets for relationsR andS

5: for each Hash BucketB in relationR do
6: LP(R) ← LP(R)∪ ApplyPreferenceFunction (B, Plocal)
7: end for
8: for each Hash BucketB in relationS do
9: LP(S) ← LP(S)∪ ApplyPreferenceFunction (B, Plocal)

10: end for
11: /* Phase II*/
12: for each local preference tupler ∈ LP(R) do
13: DB(r) ← The set of hash buckets inR that include preferred tuple(s) over

r with respect toPpairwise preference function
14: end for
15: for each local preference tuples ∈ LP(S) do
16: DB(s) ← The set of hash buckets inS that include preferred tuple(s) over

s with respect toPpairwise preference function
17: end for
18: /* Phase III*/
19: Candidatepref ← φ

20: for each pair of tuples (r,s) where r in hash bucket B inR and s in the
corresponding hash bucketB in S do

21: if (DB(r) ∩ DB(s) = φ) then
22: Add r 1 s to Candidatepref

23: end if
24: end for
25: /* Phase IV*/
26: if Prefine = Null then
27: return Candidatepref

28: else
29: return ApplyPreferenceFunction (Candidatepref ,Prefine)
30: end if

each pair of tuples (r,s) wherer in hash bucket B inR ands
in the corresponding hash bucketB in S. In this iteration, we
computer 1 s, and add its result toCandidatepref only if
DB(r) ∩ DB(s) = φ (Lines 19 to 24 in Algorithm 1). Finally,
in Phase IV, ifPrefine is null, we returnCandidatepref as
the final answer for preference functionP , otherwise, we
apply the preference functionPrefine over all entriens in
Candidatepref to produce the final answer forP (Lines 26
to 30 in Algorithm 1).

F. Case Studies

In this section, we show the strength ofPrefJoin by giv-
ing three diverse case studies, namely,skyline [3], multi-
objective [2] and k-dominance skyline[5]. Table II summa-
rizes thePlocal, Ppairwise, andPrefine for these preference
functions. We use the SQL query presented in Section I, and
relationsHotelsandCruisespresented in Figure 1 as a running
example. Generally speaking, we setPlocal, Ppairwise, and
Prefine to P .

1) Skyline: The skylinepreference method returns objects
in a data set that are not dominated by (i.e., not strictly worse
than) any other object in the data. Formally, given a dataset
D of l-dimensional tuples, askyline query finds each tuple
t, such that∄ t′ ∈ D; s.t., t′.pi is better than or equal to
t.pi, for 1 ≤ i ≤ l and t′.pm is strictly better thant.pm for
at least one dimensionm. To supportskylinequeries within
PrefJoin, we setPlocal andPpairwise to Skyline. Interestingly,
we setPrefine to null, as eachcandidatepreference tuple
produced from Phase III is guaranteed to be afinal preference
function. This holds becuase the each tupletc=r 1 s in the
candidatepreferece set could not be dominated. Tuples that are
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Fig. 3. Phase I forSkyline, multi-objective, andk-dominanceQueries

preferred to tupler, over preference attributes inR, are stored
in hash bucketsDB(r). Similarly, those tuples that dominate
s, over preference attributes inS, are only stored in the hash
bucketsDB(s). Since DB(r) and DB(s) are disjoint, for
each candidatepreference tuple, it is impossible to find a
single joined tuple that dominatest in both relationsR and
S. Thus,r 1 s can not be dominated forskylinepreference
query, and it is a confirmed final answer. (A formal correctness
proof is presented in Section VI).

Example. We applyPrefJoin algorithm for skylineprefer-
ence function as follow:

Phase I. Figure 3 shows the hash buckets for the input
relations,Hotels and Cruises, presented in Figure 1 where
three hash buckets are built as one for each value of the
location attribute, i.e.,Miami, Hawaii, and Seattle. The set
of discarded tuples are highlighted for each bucket in the two
input relations. Other tuples represents the local preference
LP(R), which is the output of Phase I. The hotel tuples
h9=(9,Hawaii,5,5,6) andh10 = (10,Hawaii,5,4,7) are locally
dominated by hotelh6=(6, Hawaii,2,2,2), hence, they are not
in the local preference set of Hawaii hash bucket. We can see
that joiningh9 or h10 with any cruise inHawaii (i.e.,c6 to c10)
will be dominated by joiningh6 with the same cruise.Phase II.
Figure 4 gives the end result of Phase II after computing
DB(t) for all tuples in theHotelsandCruisesrelations where
M , H , andS refer to hash bucketsMiami, Hawaii, andSeattle,
respectively. To compute the set of dominating hash buckets
for hotel h1 = (1,M,4,3,1), we compareh1 with hotels inH
and S hash buckets. For the firstH hotel h6 = (6,H,2,2,2),
neither h1 dominatesh6 nor h6 dominatesh1 (Case 3), so
we do not change the set of dominating hash tuples forh1

andh6. Then, we proceed withh7. We find thath1 dominates
tupleh7 (Case 2). Hence, we addM to DB(h7). As no other
hotel withinH hash bucket can dominateh1, we proceed with
hotels fromS hash bucket. Sinceh11 dominatesh1 (Case 1),
we add S to DB(h1). Then, there is no need to continue
checking other hotels inS as none of them can be dominated
by h1. Phase III. From Figure 4, the set of dominating hash
buckets forh1 is DB(h1)={S}. Also for cruisec1, we have
DB(c1)= {H,S}. SinceDB(h1) ∩ DB(c1) 6= φ, there is no
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Fig. 4. Phase II forSkyline, multi-objective, andk-dominanceQueries

need to joinh1, c1. Then, we proceed with the next cruisec2

with DB(C2)={H}. SinceDB(h1) ∩ SB(c2) = φ, we do the
actual join and add the results of Phase III. Figure 5a gives
the candidatepreference set.

Phase IV. No computations are needed in this phase, as
each candidatepreference tuple is guaranteed to be in the
final answer.

2) K-dominance Skyline: A k-dominance preference
query [5] redefines the traditional skyline dominance relation
to consider onlyk dimensional subspaces, wherek is less than
or equal to the total number of preference attributes. Formally,
given a datasetD of l-dimensional tuples, ak-dominance
query finds each tuplet, such that∄ t′ ∈ D; t′.pi is better
than or equal tot.pi for at leastk dimensions, andt′.pm is
strictly better thant.pm for at least one dimensionm.

Using k-dominancefor Plocal may discard tuples that are
needed to eliminate non-preferred tuples in the final answer
set, becausek-dominancedominance relation is not transi-
tive [5]. For example, consider tuplesr1=(1,B,1,2,3), and
r2=(2,B,2,1,4) in hash bucketB, and tupler′=(1,B′,3,1,2)
in hash bucketB′ in relation R, and tupless=(1,B,1,2,3)
in hash bucketB, and s′=(1,B′,1,2,3) in hash bucket
B′. For 2-dominance skyline,r1 2-dominatesr2, hence
as described in Section IV-A, we remove tupler2 from
LP(R). In Phase II, we calculate dominating hash buck-
ets:DB(r1)={B′}, DB(r′)=φ, DB(s)=φ, DB(s′)=φ. Hence,
Phase III producescandidatepreference set={r1 1 s, r′ 1

s′}. In Phase IV, Asr′ 1 s′ 2-dominatesr1 1 s, the final
preference set is{r2 1 s′}. However,r2 1 s 2-dominates
r′ 1 s′, therefore the correctfinal answer should be empty.
Therefore, we could not usek-dominancefor Plocal, and
Ppairwise. Thus, to be able to discard tuples in Phase I, we
can use any transitive preference functionf , such that for all
possible input relation, the output of the transitive function f
must be superset of thek-dominancepreference. Therefore,
we set Plocal and Ppairwise to skyline. Setting Plocal and
Ppairwise to skylinewould produce a superset of the answer
set, therefore, to eliminate tuples that are dominated with
respect tok − dominance, we setPrefine to k-dominance.
(A formal correctness proof is presented in Section VI).

Example. We apply PrefJoin for k-dominancepreference
function as follow: Phases I,II, and III. As we are setting
Plocal and Ppairwise to skyline, exactly the same asskyline
preference function, Phases I,II, and III proceed as presented
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earlier in Figure 3 and 4 for theskyline. Phase IV. The
highlighted tuples in Figure 5b resembles thefinal preference
set for 5-dominancepreference function. As an example, the
candidate joined tupletc = h1 1 c2 = (1,Miami,4,3,1,2,
Miami,5,2,3) cannot be an answer for a five-dominance sky-
line query as it is 5-dominated by joined tupleh6 1 c7 =
(6,Hawaii,2,2,2,7,Hawaii,3,2,2).

3) Multi-objective: A multi-objectivepreference query [2]
combines subsets of preference attributes using monotone
scoring functions, and performs a skyline over the new trans-
formed combined attributes. Formally, given a datasetD of l-
dimensional tuples, andn monotone objective functions over
tuple’s attributesf1, f2, . . . , fn, a multi-objective query finds
the set of tuples that are not dominated with respect to the
objective functions. For our motivating example of Figure 1,
a multi-objectivequery may sum the hotel price and cruise
price into a single attribute and performs the skyline over five
attributes: total price, hotel rating, hotel distance to beach,
cruise rating, and cruise days.

To supportMulti-objectivequeries withinPrefJoin, we set
the three preference functions:Plocal, Ppairwise, andPrefine

to be multi-objectivepreference function. It is important to
note that as we do not have all the input attributes to the
objective functions in each input relation, while evaluating the
objective functions, we substitute preference attributesfrom
other input relations by a constant value (e.g., zero). (A formal
correctness proof is presented in Section VI).

Example. We modify the SQL query given in Section I, to
sum the hotel price and cruise price into a single attribute.
Hence themulti-objectivepreference function have five at-
tributes:total price, hotel rating, hotel distance to beach, cruise
rating, and cruise days. We applyPrefJoin for multi-objective
preference function as follow:

Phases I, II, and III. proceeds asskylinequery because the
given multi-objective function does not include any objective
function that combines attributes from the same relation ( Fig-
ure 3 and Figure 4). Figure 5b gives thecandidatepreference
set, produced from the joining phase forHotels and Cruises
relations, depicted in Figure 1.

Phase IV. The highlighted tuples in Figure 5c resembles

the final preference set for the givenmulti-objective pref-
erence function. As an example, the candidate joined tuple
tc = h1 1 c2 = (1,Miami,4,3,1,2,Miami,5,2,3) cannot be
an answer as it is dominated by joined tupleh6 1 c6 =
(6,Hawaii,2,2,2,6,Hawaii,2,3,1).

V. JOIN ORDER

The pseudo code of ourPrefJoin algorithm, given in Sec-
tion IV-E, highlights a very important observation, stemmed
out from the fact that of reducing the cost of computing the
preference over the fewer joined results than other approaches.
Basically, the set of dominating hashing buckets,DB(s), is
computed completely for each tupler in R, where R is
the outer input relation to the join operator. Then, for the
inner input relationS, we only partially compute the set of
dominating hash buckets,DB(s), for each tuples ∈ S. The
main idea is that for each tuples ∈ S, we compute only the
dominating hash bucketsamongthe ones inDB(r), wherer
is the current tuple under consideration from relationR. This
observation means that the overall performance ofPrefJoin
can be affected by the join order, i.e., havingR 1 S versusS
1 R. It is the objective of this section to estimate the cost of
computing the sets of dominating hash buckets for both input
relationsR and S, should each relation be considered as an
outer or an inner. Then, we use these costs to decide which
join order will be more beneficial to the overall performance
of PrefJoin.

Cost of computingDB(R) for the outer relationR. For
each tupler ∈ R, where r is located in hash bucketB,
the worst case cost of computingDB(r) can be calculated
by estimating the cost of comparingr pair wisely with each
other local preference tuple in each other hash bucketB′ from
relation R, i.e., B′ 6= B. Since the cost of comparing two
tuples is proportional to the number of preference attributes,
the total cost for computingDB(r) is Cost(DB(r))=

∑
B

(|B|∗n) ∀B, s.t., r /∈ B, where|B| is the cardinality of hash
bucketB in relation R, and n is the number of preference
attributes in relationR. Summing up over all tuples inR,
the total cost for local preference set computation for outer
relationR is estimated to beCostDB(R) =

∑
r cost(DB(r)),

∀r ∈ LP(R).
Cost of computingDB(S) for the inner relationS. For

each tuples ∈ S, to be joined with tupler ∈ R, wheres is
located in hash bucketB, the worst case cost of computing
DB(r) can be calculated by estimating the cost of comparings
pair wisely with each other local preference tupleonly located
in hash bucketsB ∈ DB(r). As the cardinality ofDB(r)
is significantly lower than the number of hash buckets inS,
having s as an inner relation encounters much lower cost in
computingDB(S), than havingS as an outer relation. In
our running example, the average cardinality of the sets of
dominating hash buckets is 0.89, compared to 3 as the number
of hash buckets. Then, the total cost for computingDB(s) is
Cost(DBr(s))=

∑
B (|B|∗m) ∀B, s.t., B ∈ DB(r), where

|B| is the cardinality of hash bucketB in relationS, andm
is the number of preference attributes in relationS. Summing



up over all tuples inS, the total cost for local preference set
computation for inner relationS is estimated to beCostDB(S)
=

∑
s cost(DB(s)), ∀s ∈ LP(S).

Using the above cost estimations, thePrefJoinalgorithm and
pseudo code is slightly modified to perform the cost estimation
procedure right away after Phase I. Basically,PrefJoin will
contrast two costs: (a) The cost of havingR as an outer relation
plus the cost of havingS as an inner relation, and (b) The cost
of havingS as an outer relation plus the cost of havingr as
an inner relation. If the first estimated cost is lower, we just
proceed withR as an outer relation, otherwise, we swap the
two relations to haveS as the outer one.

VI. PROOF OFCORRECTNESS

This section proves the correctness of thePrefJoinalgorithm
for the skyline, k-dominanceand multi-objectivepreference
methods. For simplicity, we limit the correctness proof to two
input relationsR andS.

A. Correctness ofPrefJoinfor skyline queries

The correctness ofPrefJoin for skylinepreference function
follows from proving that: (1) All skyline tuples in the joined
relationR 1 S are reported from thePrefJoinalgorithm, and
(2) Any tuple returned from thePrefJoinalgorithm is a skyline
over the joined relationR 1 S.

Theorem 1:Any tuple r 1 s that is a skyline over the
relationR 1 S, will be reported by the PrefJoin algorithm.

Proof: Assume that there exist a tuplet=r 1 s that is a
skyline over the relationR 1 S. However,t is not reported by
the PrefJoinalgorithm. Throughout thePrefJoinalgorithm, if
t is not reported, then this means that either tupler or s (or
both) was discarded inLocal Pruningor Joining phases. In
Local Pruningphase, a tupler is only discarded if it is not a
local preference tuple, i.e., there is a tupler′ ∈ R, and in the
same hash bucket ofr, such thatr′ dominatesr. Sincer andr′

are in the same hash bucket, they have the same value for the
join attribute, thusr′ 1 s dominatesr 1 s, which contradicts
our assumption that tupler 1 s is a skyline over the relation
R 1 S. The same contradiction holds fors. In Joiningphase,
tuple r 1 s is not added only if tuples is dominated in the
same bucketB where tupler is dominated. Hence, there are
other tupless′ ∈ B′, andr′ ∈ B′. Thus, the joined tupler′

1 s′ dominatesr 1 s, which contradicts our assumption. We
conclude that the assumption thatt is not reported byPrefJoin
is not possible.

Theorem 2:Any tupler 1 s that is reported by thePrefJoin
algorithm is actually a skyline over the relationR 1 S.

Proof: Assume tuplet=r 1 s is reported by the
PrefJoin algorithm, but there is another tuplet′=r′ 1 s′ that
dominatest. Assume thatr′ ∈ bucketB′ of relation R and
s′ ∈ bucketB′ of relation S. Using the property of skyline
dominance relation,r′ must dominater, ands′ must dominate
s. However, the algorithm adds a tuple toFinalsky, (Line 22
in Algorithm 1), only if s is not dominated in any bucket
where r is dominated, including bucketB′ which contains
tuple s′, as we assume thats′ dominatess. Therefore,r 1 s

is not added toFinalsky, and hence not reported byPrefJoin,
which contradicts our assumption.

B. Correctness ofPrefJoinfor k-dominancequeries

The correctness ofPrefJoin for k-dominancepreference
function follows from proving that: (1) Allk-dominancetuples
over the joined relationR 1 S are reported from thePrefJoin
algorithm, and (2) Any tuple returned from thePrefJoin
algorithm is ak-dominancepreference tuple over the joined
relationR 1 S.

Theorem 3:All k-dominancetuples over the joined relation
R 1 S are reported from thePrefJoinalgorithm.

Proof: As we setPlocal, andPpairwise to skyline, from
theorems 1 and 2, thecandidatepreference set contains all
skyline tuples over the preference query. As the answer of
k-dominancepreference function is a subset of the answer
of skyline preference function [5],PrefJoin returns all k-
dominancepreference tuple.

Theorem 4:Any tuple returned from thePrefJoinalgorithm
is a k-dominancepreference tuple over the joined relationR
1 S.

Proof: As we set Prefine to k-dominanceover the
candidate preference set which contains all tuples in the
answer of thek-dominancepreference set (Theorem 3), each
tuple returned fromPrefJoinis ak-dominancepreference tuple
over the joined relationR 1 S.

C. Correctness ofPrefJoinfor multi-objectivequeries

The correctness ofPrefJoin for multi-objectivepreference
function follows from proving that: (1) All preference tuples
with respect tomulti-objectivequery in the joined relationR
1 S are reported from thePrefJoin algorithm, and (2) Any
tuple returned from thePrefJoinalgorithm is a multi-objective
preference tuple over the joined relationR 1 S.

Theorem 5:Any tuple t that is a preferred tuple with
respect tomulti-objectivequery over the relationR 1 S, will
be reported by thePrefJoinalgorithm.

Proof: Assume that there exists a tuplet that is a
preferred tuple with respect tomulti-objectivequery over the
relation R 1 S. However,t is not reported by thePrefJoin
algorithm. First assume thatt=r 1 s is a preferredtuple, yet
it is not added to thecandidatepreference set. Throughout
the PrefJoin algorithm, if t is not added to thecandidate
preference set, then this means that either tupler or s (or
both) was discarded inLocal Pruningor Joining phases. In
Local Pruningphase, a tupler is only discarded if it is not
a local preference tuple, i.e., there is a tupler′ ∈ R, and
in the same hash bucket ofr, such thatr′ dominatesr over
preference attributes in relationR, and for other attributes inS,
we set them to constant values for tuplesr andr′ and objective
functions are monotone. Sincer andr′ are in the same hash
bucket, they have the same value for the join attribute, thusr′

1 s dominatesr 1 s, which contradicts our assumption that
tupler 1 s is should be added to thecandidatepreference set.
The same contradiction holds fors. In Joiningphase, tupler 1

s is not added only if tuples is dominated in the same bucket



B where tupler is dominated. Hence, there are other tupless′

∈ B′, andr′ ∈ B′. Thus, the joined tupler′ 1 s′ dominates
r 1 s, which contradicts our assumption. This proves thatt=r
1 s is added tocandidatepreference set, ift is a preferred
tuple. Then, as we setPrefine to multi-objective, thent must
be reported if it is preferred with respect tomulti-objective
query. We conclude that the assumption thatt is not reported
by PrefJoin is not possible.

Theorem 6:Any tuple returned from thePrefJoinalgorithm
is a multi-objectivepreference tuple over the joined relation
R 1 S.

Proof: As we setPrefine to multi-objectiveover the
candidate preference set which contains all tuples in the
answer of themulti-objectivepreference set (Theorem 5), each
tuple returned fromPrefJoin is a multi-objectivepreference
tuple over the joined relationR 1 S.

VII. E XPERIMENTS

In this section, we analyze the performance of our pro-
posed framework,PrefJoin, compared with our two closest
related works, the global skyline [13], denoted asGS and
FlexPref [19], denoted asFlex. All our experiments are based
on actual implementation of the three algorithmsPrefJoin,
GS, and Flex, inside PostgreSQL [24]. Unless mentioned
otherwise, our data set is synthetically generated for two input
relationsR and S, whereS is the inner relation, the ratio
between the cardinality of both relations is 100, i.e.,|S||R|=100,
the cardinality of relationS is 1M, the number of groups (i.e.,
distinct values for the join attribute) is 5K, and the cardinality
of the local preference set in each relation is 10%. Also, we
assume the set of preference attributes is distributed evenly be-
tween the two input relations, with a default of three attributes
in each relation. We use the number of comparisons and wall
clock time as our performance measures. All experiments are
executed on 2.0 Ghz Intel processor with 1 GB of RAM.

As we will see,PrefJoin always outperformsGS and Flex
with at least one order of magnitude. That is why all the
experiment figures depicted in this section are plotted with
a log scale in terms of the number of comparisons or wall
clock time.

A. Scalability

Figure 6 gives the behavior of the three algorithms, when
increasing the cardinality of the inner relationS from 50K
to 6.4M, while keeping the ratio between relationsR and
S intact. Figure 6a gives the number of comparisons in log
scale for a skyline preference function, the order of magnitude
difference between our proposed algorithmPrefJoinand other
algorithms is due to the fact thatPrefJoin avoids applying
the preference function over the joined tuples, and utilizes the
dominance relation between tuples in each relation. Similarly,
Figures 6b and 6c give the number of comparisons fork-
dominanceand multi-objective respectively. AsGS is only
limited to skyline, we run our experiments usingFlex and
PrefJoin. The speedup for multi-objective query is smaller than
skyline, and k-dominancepreference function, as it requires
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more computations to be performed in Phase IV because
objective preference attributes are not computed until Phase IV.

Figure 6d gives the wall clock time in log scale, forskyline
preference query, which shows thatPrefJoin has around two
orders of magnitude better performance than other algorithms.
The wall clock time for multi-objective and k-dominance
shows similar behavior. Based on these experiments, we can
conclude that, with the increase of the data size,PrefJoin is
much more scalable than its competitors, and the performance
gain reaches up to three orders of magnitude when the data
size exceeds 1M. Due to space limitations, we run the next
experiments using only the skyline preference function. This
is also allow us to haveGS in the experiments.

B. Number of Preference Attributes

Figure 7 studies the effect of the number of preference
attributes on the performance ofPrefJoin, GS, andFlex, as we
increase the number of preference attributes, in each relation,
from two to six, i.e., increasing the total number of preference
attributes of the output tuples from four to twelve. This directly
increases the cardinality of the final preference set from 2K
to 65K. For all algorithms, the number of comparisons and
execution time increase with the increase of the number
of preference attributes. However,PrefJoin exhibits better
scalability as it avoids applying the preference function on
the preference attributes of the joined tuples.

C. Join Cardinality

This section investigates the effect of the join cardinality
on the execution time and number of comparisons. The join
cardinality depends on: (a) the number of groups in each
relation (i.e., the number of distinct values for the equality
join attribute), and (b) the join ratio (i.e., how many tuples in
S will be joined with a single tuple fromR).

1) Number of Groups:Figure 8 studies the effect of in-
creasing the number of groups (i.e., distinct values of the
join attribute) from 300 to 10K for input relations, on the
total runtime and the comparisons forPrefJoin, Flex and
GS algorithms. With the increase of number of groups, the
execution time and comparisons for all algorithms decrease
exponentially where the size of the final preference set de-
creases from 260K to 5K. In the mean time, increasing the
number of groups increases the cost of computing the sets of



 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

10 40 160 600

C
o

m
p

a
rs

io
n

s
(M

)

Data size *(10
4
)

Flex
GS

PrefJoin

(a) Skyline

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

10 40 160 600

C
o

m
p

a
rs

io
n

s
(M

)

Data size *(10
4
)

KFlex
KPrefJoin

(b) K-dominance
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(c) Multi-objective
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Fig. 6. Scalability
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Fig. 9. Join ratio

dominating hash buckets for local preference tuples, therefore
the speedup ofPrefJoindecreases with respect toFlex andGS
algorithms. Overall, thePrefJoin algorithm exhibits at least
two orders of magnitude better performance than bothGSand
Flex algorithms.

2) Join Ratio: Figure 9 increases the join ratio between
relationsR andS, i.e., how many tuples inS will be joined
with a single tuple fromR. The cardinality ofR is set to 20K,
while the join ratio is increased from 1:1 to 1:256. With the
increase of the join ratio, execution time and comparisons,for
all algorithms, increase as the size of the final preference set
increases from 1320 to 111K.PrefJoin, consistently, has one to
two orders of magnitude better performance than bothGSand
Flex algorithms, for all join ratios. This is due to: (a) The final
preference set size increases; whilePrefJoinavoids preference
comparisons over these tuples, the other algorithms do not,and
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Fig. 10. Percentage of Local preference Sets

(b) utilizing the dominance relations inR to avoid unneeded
dominance checks inS.

D. Percentage of Local Preference Set

Figure 10 gives the effect of increasing the percentage of
the local preference set for relationsR and S from 10% to
90%, on the total runtime and comparisons forPrefJoin, Flex
andGS. We set the cardinality of relationS to 200K. Hence,
the local preference set for relationS increases from 20K to
180K. With the increase of percentage of local preference set,
the execution time and comparisons for all algorithms increase,
yet PrefJoin, consistently, has at least two orders of magnitude
better performance than bothGS and Flex algorithms. This
performance is due to the fact that as the final preference
sets increase exponentially from 8K to 100K, onlyPrefJoin
can utilize the dominance relations from relationR to avoid
preference comparisons inS.

E. Join Order

Figure 11 studies the effect of the join order on the per-
formance of thePrefJoinalgorithm. We execute thePrefJoin
algorithm on R 1 S, i.e., R is an outer relation andS
is the inner one, andS 1 R, termed asRPrefJoin. As
most computations of the set of dominating hash buckets are
executed in the outer relation of the join,PrefJoin shows an
order of magnitude improvements for the running time and
comparisons with the increase of the cardinality of relation S
from 50K to 6.4M. This confirms the importance of the cost
estimations discussed earlier in Section V. Due to accurate
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Fig. 12. Three input relations

cost estimation,PrefJoin will decide to useR as the outer
relation, and hence achieve an order of magnitude performance
improvement in lieu of choosingS as the outer relation.

F. Multiple Input Relations

Figure 12 gives the performance ofPrefJoin, GS, andFlex
for three input relations when increasing the size of each
relation from 100K to 800K. With the increase of input size,
the number of comparisons and execution time increase for
all algorithms. We can see thatPrefJoin reaches up to four
orders of magnitude better performance for the comparisons
and three orders of magnitude better for the time than other
algorithms. This is mainly because thecandidatepreference
set increases exponentially with the input size forGSandFlex
algorithms.

Contrasting this experiment with the similar one given in
Figure 9 that were designed for only two relations, we can
see that the performance gain achieved inPrefJoinover other
algorithms is even better in case of three relations. This
means thatPrefJoin is better equipped with multiple input
relations than other algorithms. This performance is due to
two main factors: (1) The progressive output behavior of
PrefJoin makes it easier to pipeline the result of one join to
be the input of another join operator, such behavior is not
found in other algorithms, and (2) Increasing the number of
joined relations immediately results in increasing the number
of preferred tuples which, as we have seen been seen in
previous experiments, badly affected other algorithms.

We could not run other experiments for more than three
input relations as the cost of executing bothGS and Flex

increases dramatically, and that shows us thatPrefJoin is way
preferable for multiple input relations.

VIII. C ONCLUSION

This paper presentedPrefJoin, an efficient preference-aware
join query operator, designed specifically to deal with prefer-
ence queries where the set of preferred attributes reside in
more than one relation. The main idea ofPrefJoin is to make
the join operator aware of the required preference functional-
ity, and hence inject the ability to early prune those tuplesthat
have no chance of being a preferred object.PrefJoinconsists of
four main phases:Local Pruning, Data Preparation, Joining,
and Refining that discard irrelevant tuple from the input
relations, prepare tuples for next phases, joins non-pruned
objects, and refine the join result respectively. An interesting
characteristic ofPrefJoin is that it aims to join only those
tuples that are guaranteed to be an answer, and hence: (a) saves
computation costs by not joining unnecessary objects, and
(b) saves computation cost in pruning, by applying the prefer-
ence function over those objects that may needlessly be joined.
PrefJoin supports a variety of preference function including
skyline, multi-objective andk-dominance preference queries,
by appropriately defining theP local, Ppairwise, andPrefine

for each preference function. The correctness ofPrefJoinwas
proved as it returns all preferred tuples and all returned tuples
are preferred. Experimental evaluation based on a system
implementation ofPrefJoin and its competitors [13], [19]
inside PostgreSQL show thatPrefJoin consistently achieves
one to three orders of magnitude performance gain over its
competitors in various scenarios.
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[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The SkylineOperator.
In Proceedings of the International Conference on Data Engineering,
ICDE, 2001.

[4] C. Y. Chan, P.-K. Eng, and K.-L. Tan. Efficient Processingof Skyline
Queries with Partially-Ordered Domains. InProceedings of the Inter-
national Conference on Data Engineering, ICDE, 2005.

[5] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang.
Finding k-Dominant Skylines in High Dimensional Space. InProceed-
ings of the ACM International Conference on Management of Data,
SIGMOD, 2006.

[6] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang.
On High Dimensional Skylines. InProceedings of the International
Conference on Extending Database Technology, EDBT, 2006.

[7] S. Chaudhuri and L. Gravano. Evaluating Top-k SelectionQueries. In
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 1999.

[8] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In Proceedings of the International Conference on Data Engineering,
ICDE, 2003.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms
for Middleware. InProceedings of the ACM Symposium on Principles
of Database Systems, PODS, pages 102–113, Santa Barbara, CA, June
2001.

[10] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
large data sets. InProceedings of the International Conference on Very
Large Data Bases, VLDB, 2005.



[11] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining Ranked Inputs in
Practice. InProceedings of the International Conference on Very Large
Data Bases, VLDB, 2002.

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. SupportingTop-k Join
Queries in Relational Databases. InProceedings of the International
Conference on Very Large Data Bases, VLDB, 2003.

[13] W. Jin, M. Ester, Z. Hu, and J. Han. The Multi-RelationalSkyline
Operator. InProceedings of the International Conference on Data
Engineering, ICDE, 2007.

[14] W. Jin, M. D. Morse1, J. M. Patel, M. Ester, and Z. Hu. Evaluating Sky-
lines in the Presence of Equijoins. InProceedings of the International
Conference on Data Engineering, ICDE, 2010.

[15] W. Kießling. Foundations of Preferences in Database Systems. In
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 2002.

[16] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries. InProceedings of the
International Conference on Very Large Data Bases, VLDB, 2002.

[17] G. Koutrika and Y. E. Ioannidis. Personalization of Queries in Database
Systems. InProceedings of the International Conference on Data
Engineering, ICDE, 2004.

[18] J. Lee, G. won You, and S. won Hwang. Personlized Top-K Skyline
Queries in High-Dimensional Space.Information Systems, 34(1):45–61,
2009.

[19] J. J. Levandoski, M. F. Mokbel, and M. Khalefa. FlexPref: A Framework
for Extensible Preference Evaluation in Database Systems.In Proceed-
ings of the International Conference on Data Engineering, ICDE, 2010.

[20] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars:The k Most
Representative Skyline Operator. InProceedings of the International
Conference on Data Engineering, ICDE, 2007.

[21] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for
distributed top-k query algorithms. InVLDB, 2005.

[22] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting
Incremental Join Queries on Ranked Inputs. InProceedings of the
International Conference on Very Large Data Bases, VLDB, 2001.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems.ACM Transactions on Database
Systems, TODS, 30(1):41–82, 2005.

[24] PostgreSQL: http://www.postgresql.org.
[25] V. Raghavan and E. A. Rundensteiner. Progressive result generation

for multi-criteria decision support queries. InProceedings of the
International Conference on Data Engineering, ICDE, 2010.

[26] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. InProceedings of the International Conference on
Data Engineering, ICDE, 2007.

[27] M. Sharifzadeh and C. Shahabi. The Spatial Skyline Queries. In
Proceedings of the International Conference on Very Large Data Bases,
VLDB, 2006.

[28] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k Query Processing
in Uncertain Databases. InProceedings of the International Conference
on Data Engineering, ICDE, 2007.

[29] D. Sun, S. Wu, J. Li, and A. Tung. Skyline-join in distributed databases.
In ICDEW, 2008.

[30] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline
Computation. InProceedings of the International Conference on Very
Large Data Bases, VLDB, 2001.

[31] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based Representative
Skyline. In Proceedings of the International Conference on Data
Engineering, ICDE, 2009.

[32] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E. Abbadi.
Parallelizing Skyline Queries for Scalable Distribution.In Proceedings
of the International Conference on Extending Database Technology,
EDBT, 2006.

[33] T. Xia, D. Zhang, and Y. Tao. On Skylining with Flexible Dominance
Relation. In Proceedings of the International Conference on Data
Engineering, ICDE, 2008.

[34] M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k Dominating
Queries on Multi-Dimensional Data. InProceedings of the International
Conference on Very Large Data Bases, VLDB, 2007.

APPENDIX

A. Cost Analysis ofPrefJoin

In this section, we compare the cost of computing prefer-
ence queries for the proposed algorithm,PrefJoin, andFlex-
Pref [19]. We limit our discussion only toskylinepreference.

For two input relationsR with cardinality of|R| tuples and
relation S with |S| tuples. We denote the skyline tulples in
relation R and S as Sky(R), andSky(S), respectively. For
simplicity, we assume a uniform distribution of skyline tuples
in each input relation overk hash buckets, i.e., the cardinality
of skyline tuples in hash bucketB of relationR is |Sky(R)|

k
.

We compare the relevant performance cost of each phase for
both PrefJoin, andFlexPrefalgorithms, as follow:

• Local Pruning: Local Pruning phase finds the skyline
for each input relations, this phase is identical in the
both algorithms, hence it would not affect the relevant
performance.

• Data Preparation: In PrefJoin algorithm, we find the
dominance relation between the skyline tuples in local
preference for each relation. This cost is bounded by
O(|Sky(R)|2) and O(|Sky(S)|2) for relation R and S,
respectively. Hence, the total cost ofData Preparationis
O(|Sky(R)|

2
+ |Sky(S)|

2
). However,FlexPrefdoes not

performs any data preparation.
• Joining: The cost of joining local preference set for

hash bucketB from relationR with the corresponding
local preference set in relationS, for both approaches,
is bounded byO( |Sky(R)|

k
. |Sky(S)|

k
), as the number of

tuples is |Sky(R)|
k

, and |Sky(S)|
k

respectively. Hence, the
total join cost is bounded byO( |Sky(R)|.|Sky(S)|

k
) join

operations. The cardinality of the join result is bounded
by O( |Sky(R)|.|Sky(S)|

k
) tuples.

• Refining: Refining phase, in PrefJoin, is not needed
for skyline queries, i.e.,O(1), while, the cost to find
the skyline over the joined tuples is bounded by

O( |Sky(R)|.|Sky(S)|
k

2
) comparisons.

From this analysis, we deduce that our approach performs
O(|Sky(R)|

2
+ |Sky(S)|

2
) comparisons inData Preparation

phase to saveO( |Sky(R)|.|Sky(S)|
k

2
) comparisons.


