PrefJoin: An Efficient Preference-aware Join
Operator

Mohamed E. Khalefa Mohamed F. Mokbel Justin J. Levandoski

Department of Computer Science and Engineering, UniyeddiMinnesota
{khalefa,mokbel,justip@cs.umn.edu

Abstract— Preference queries are essential to a wide spectrum Hid|Location|PR| B cld [Location | PIR| D)
of applications including multi-criteria decision-making tools and 1 AI‘;_“"”? ;‘g ; 12 A"f"mf ; gg @
personalizeddatabases. Unfortunately, most of the evaluation 2 Mo 2l R GHE
. . wami amit
techniques for preference queries assume that the set of gezred 4 | Miami |4]4|3 4 | Miami [4]4]6 @
attributes are stored in only one relation, waiving on a wideset 5 | Miami [4]3]5 5 | Miami [4]3]5 »\
of queries that include preference computations over mulple 6 | Hawaii | 2] 2[2 6 | Hawaii |5[3]1 Hbels Chuises
relations. This paper presentsPrefJoin, an efficient preference- 7 |2 || 7 || Femm | P (b) Plan T
joi tor, designed specifically to deal wh 8 |Howais |41114 ER L) Flan
aware Join quer_y operator, N g . p y N 9 |Hawaii |5|5|6 9 |Hawaii |5(2|8
preference queries over mulpple relatlons.PrefJom consists of 70 | Hawaii [514|7 70 |Hawaii | 7156
four main phases:Local Pruning, Data Preparation Joining, and 11 | Seattle |3|3]1 11 | Seattle |4|3]1 @
Refining that discard irrelevant tuple from the input relations, 12 |Seattle |3|1|4 12 | Seattle |5|1|4
prepare tuples for next phases, joins non-pruned objects, ral 13 | Seatle |2|3|4 13 | Seattle |3|3]4 @ @
- PN . . - 14 |Seattle |4|4|3 14 |Seattle |4|4|5
refine the join result respectively. PrefJoin supports a variety 15 |Seaztie 1556 25 | Seattic T61516
of preference function including skyline, multi-objective and k- Hotel Craises Hojels CrTuises
. . . - - otels
dominance preference queries. An interesting charactertic of () Relations Hotels & Cruises (c) Plan II

PrefJoin is that it is tightly integrating with join hence we can
early prune join only those tuples that are guaranteed not tdbe an
answer, and hence it saves significant unnecessary compuitats
cost. We show the correctness oPrefJoin. Experimental evalu-
ation based on a real system implementation inside Postgr€h
shows thatPrefJoin consistently achieves from one to three orders stored in relation$lotelsand Cruises respectively. Assuming

of mag_nitude performance gain over its competitors in vari®s minimum rating is better, this user preference request @n b
scenarios. represented by the following SQL query:

Fig. 1. Motivating Example

|I. INTRODUCTION .
Pref . tial t id ‘ SELECT * from Hotels h, Cruises c
reference queries are essential to a wide spectrum ERE c. |l ocation = h.location

applicatiqnsincluding multi-criteria decision-making)ts.and PREFERENCE h. price(min), h.rating(min),
personalized databasgs [15],_[17]. Sev_eral preferenaifunrs h.beach_di st (nin), c.price(mn), c.rating(mn),
have been proposed in the literature includtop-k [7], sky-
lines[3], multi-objectivg2], k-dominancg5], k-frequency6],
and ranked skylined18]. Given a set of multi-dimensional To answer this SQL query using existing single-table pref-
objects, preference queries find a set of interesting abjeatrence techniques, we first need to join the two input reiatio
i.e., objects that are preferred to the user according toesofne., Hotels and Cruiseg, and then apply the preference
preference function. An example preference queryfiisd query algorithm on the joined relation based on the location
my best restaurants based on my preferencesiere user attribute, i.e.,Pref (Hotels X;,cqtion Cruisey. Figure 1b
preferences for a restaurant can be minimal price and mininsows such a query plan. Unfortunately, such an approach
distance. is very inefficient as it completely isolates the preference
Most of the research efforts for the preference query evaliunctionality from the join operator. As a result, the join
ation are designed to compute the preference set over &sirgperation will produce too many tuples that have no chance
relation (e.g., see [1], [3], [4], [7], [8], [10], [16], [18][23], of being preferred objects. Another approach is to push the
[32]). Unfortunately, such work can not be directly applied single-relation preference operatid?r ef before the join
a wide spectrum of preference applications and queriesevheperator, as depicted in the query plan in Figure 1c. However
the preferred attributes are stored in more than one relatithis is simply incorrect as the preference is not distribu-
Consider, for example, a scenario where a user is looking fire over the join, i.e.,Pref (Hotels Wipeation Cruises)
a hotel and a cruise in the same location. User preferences#o Pr ef (Hotels)XocationPr €f (Cruises). For example, in
the hotel are lower price, better rating, and closer to ttecbe Figure 1, if the preference function is a skyline query, the
and for the cruise are lower price, better rating, and shorteotel represented by tuplé2, Miami,4,2,3) is dominated
stay. Figure la gives information about hotels and cruisds; hotel (6,Hawaii,2,2,2), hence it would not proceed to

c. days(mn)

the join operator. Similarly, cruisé3,Miami,5,3,1) is domi- Algorithm Query Coﬂ{t‘ion SL(.);zd C;ngrr
nated by cruisél1,Seattle,4,3,1). However, the joined tuple TA & NRA [9] Top-k Join | Key1:1 v —
(2,Miami 4,2,3,3,Miami,5,3,1) is not dominated by any L - ———
other tuples and hence, it is a valid answer for the SQL query. Rr\JR/l-(\-JRq [1[112] ¥op—:§ join gey 1:1I j j
H A H ank-Join 0op-K Join eneral

2 cartesian producy oo oy wenmeIoNS e oy sy o 1 T

Very recently, few research efforts have started to address skytine 113] Si}s’l‘i’;e .
preference queries over multiple relations [13], [14],][125], Skyline Join [29] Join
however such work either focuses on only the skyline prefer- FlexPref [19] P’ejfgi’rfﬂce General | — v
ence function [13], [14], [25] or provides a preliminary geit STIom Sreterence T General T —= =
solution for a first cut generic preference query engine with ‘ ‘ Join ‘ ‘ ‘ ‘
no particular focus on the join operation [19]. Furthermore TABLE |
two of these research efforts about skyline queries arelynain RELATED WORK

relying on the existence of index structures and are geared
towards generating progressive results [14], [25].

In this paper, we propoderefJoirn an efficient preference-
aware join query operatoRrefJoin is generic for a wide M. A preference query) finds tuples fromR; X Ry X ...
variety of preference functions, does not assume the existe i2,,,, that are preferred with respect ® and M.
of any index structure, and achieves orders of magnitude perApplying this formulation to the SQL query given in
formance over previous approaches [13], [19]. The main gagéction | gives: (1) Two input relatiortdotels Hand Cruises
of PrefJoinis to make the join operation aware of the require@, (2) The equality join condition i#i.location = C.location,
preference functionality, and hence the join operationldibe (3) Six preference attributesi.price, H.rating, H.beachdist,
able to early prune those tuples that have no chance of be@grice, C.rating, and C.days and (4) A skyline preference
a preferred object without actually doing the join opernatio method. The SQL query finds those tuples, on the fdD(
The PrefJoinalgorithm consists of four phases, namélgcal CID, Preference attributgsthat are skylines over the six
Pruning Data Preparation Joining andRefining The Local preference attributes fromd X C.
Pruningphase filters out, from each input relation those tuples
that are guaranteed not to be in the final preference set. The I1l. RELATED WORK
Data Preparationphase associates meta data with each non-
filtered tuple that will be used to optimize the executiontaf t Due to their applicability, preference queries have resiv
next phase. Thaoiningphase uses that meta data, computed @feat interest ever since their introduction into database
the previous phase, to decide on which tuples should bedoingeveral preference functions have been proposed in the lit-
together. Finally, thdRefiningphase finds théinal preference erature includingskyline[3], [8], [10], [16], [23], [32], multi-
set from the output of the joining phase. objective[2], k-dominance[5], k-frequency[6], ranked sky-

PrefJoin is presented as a general framework that caies[18], spatial skyline[27], k representative skylind20],
support a wide variety of preference functions, though wlg ordistance-based dominanfgl], e-skyline[33], andtop-k dom-
present three cases in this paper, namshyline [3], multi- inance[34]. With the exception of very recent research [13],
objective[2], and k-dominancg5]. Experimental analysis of [14], [19], [25], all research efforts in preference querpp
PrefJoin implemented in PostgreSQL [24], shows from two téessing rely on the assumption that all input data reside in
three orders of magnitude improvement over existing smhsti only one relation with no direct extension to support theecas
[13], [19]. The rest of this paper is organized as followsc-SeWhere preference attributes are scattered over more than on
tion Il formulates the problem. Section Il highlights reded relation. Hence, the only solution is to completely join the
research efforts. Section IV presents feefJoin framework input relations, then apply the preference method on the top
with three case studies. Section V discusses the effect adfthe join result, which is a very expensive solution.
the join order on the performance of the proposed algorithm.Table | gives a taxonomy of existing work for preference
Section VI proves the correctness of the proposed algorithgueries over multiple relations. For completeness, weidens
Section VII gives experimental analysis. Finally, Sectidii a special case of join, wherne relation is presented as a

concludes the paper. collection of sorted lists [9]. Each sorted list containglés on
the form(id, value) and is sorted based on thelueattribute.
Il. PROBLEM FORMULATION Table | divides these research efforts with respect to: (&rQ)

Without loss of generality, we assume that all dimensidype (e.g., Top-k join or skyline join), (b) Join conditioe.g.,
values have a total order in which smaller values are betten general join condition or key only join), (c) Sorted list®/,
Problem Formulation. Given: (1) m input relationsR;, the input of the query must be in the form of sorted lists), and
Ry, ..., R,, (2) Equality join condition overR, to R,,, (d) Operator.
(3) A set of preference attributd3; such that p € P, 3¢ s.t As it can be seen in the table, existing work for preference
p € R; andV R;, R, N P # ¢, and (4) A preference methodjoin are Top-K Join for one relation represented as a cadiact

Final Preference set

of sorted list (e.g., [9], [11]), approximate Top-k join indés-

tributed envirolnment. [21], Top-K wiFh general condit_iorir]'o Phase IV: Refining

[12], [22], skyline Join for one relation represented intedr -~ Candidate Preferenceset | __ _______

manner [30], skyline Join in a centralized environment [13] Phase III: Joining

[19], skyline Join in a distrusted environment [29], prefate -~~~ -"----> i fffffffff

join [19]. Other research efforts [26], [28], not shown ireth 28] [PBLL - |28 [Phase II: Data Preperation

table_, compute the Top-k_ join query over uncertain (_jata._ s [LocalPref| Phase I Local Pruning
Existing work for multi-preference query processing (i.e. --4------- oo fr--------
no top-k) is limited to the very recent research [13], [14], . R, o R,
[19], [25] (as seen from the table) which either focus on only
the skyline preference function [13], [14], [25] or provide
preliminary generic solution for a general preference guer
engine with no particular focus on the join operation [19].
Furthermore, two of these research efforts mainly rely an tifformation about input tuples to early decide whether two
existence of index structures and are geared towards giangeratuples should be joined together. With this, based on actual
progressive results, turning them not optimized for a foihj iMplementation inside PostgreSQBrefJoin achieves two to
result [14], [25]. The two closest works to ours are: (a) globthree orders of magnitude better performance over global
skyline [13], as it does not require an index structure and ngkyline [13] for skyline queries and over FLexPref [19] for
geared towards progressive results, though it supportg ofikyling k-dominanceand multi-objectivequeries.
skyline queries, and (b) FlexPref [19], as it is kind of a
generic solution for a wide variety of preference functions
Both approaches [13], [19] have similar skeleton functiiipa
that contains three steps: (1) Computing tbeal preference
set for each input relatio;, (2) Joining local preference In this section, we present our proposed algoritRnefJoin
tuples from input relations to findandidatepreference set, an efficient preference-aware join query operator for a wide
and (3) Computing the preference function over taedidate Vvariety of preference functions. In particular, we focusthis
preference set. paper, orskyline[3], k-dominancg5] and multi-objective[2]
There are two levels to embed the preference queries imgference functions. However, other preference funsttbat
database either in application level as a layer in top of DBM8cludetop-k dominating34] andk-frequency6] can be also
or inside the engine. When the operator is implementedeénsigupported. The main goal d?refJoinis to make the join
the DBMS, the engine is well-aware of the existing of theperator aware of the required preference functionalityl a
operator and generates plans that uses the operator. Feomhgnce the join operation would be able to prune those tuples
table the algorithms that are presented as operators afe [1that have no chance of being a preferred object with minimal
[13]. Our proposed algorithmBrefJoinis implemented as an computational overhead. THerefJoin algorithm consists of
operator inside the DBMS engine. four phases, as depicted in Figure 2, namkbgcal Pruning
There are two levels to embed the preference queries ifgta Preparation Joining and Refining These phases use
database either in application level as a layer in top of DBM8ree preference functiomocar, Ppairwises ANdPrefine that
or inside the engine. When the operator is implementedénsidre chosen carefully based &h Table Il gives the choices of
the DBMS, the engine is well-aware of the existing of th&iocals Ppairwise, @A Prefine for skyling k-dominanceand
operator and generates plans that uses the operator. Feomnihlti-objectivepreference functions. THeocal Pruningphase
table the algorithms that are presented as operators afe [1filters out, usingP;...;, from each input relation, those tuples
[13]. Our proposed algorithmBrefJoinis implemented as an that are guaranteed not to be in the final preference set. The
operator inside the DBMS engine. Data Preparationphase associates meta data with each non-
Our proposed approachrefJoin distinguishes itself from filtered tuple that will be used to optimize the executiontwf t
its competitors [13], [14], [19], [25] as it has the followgn Next phase. Thédoining phase uses that meta data, computed
characteristics: (1) Unlike [13], [14], [25]PrefJoinis not in the previous phase, to decide on which tuples should be
limited to skyline queries, but it is generic to support a svidjoined together. Finally, th&kefiningphase use®,.yi,. to
variety of preference queries; making it suitable for commefind the final preference set from the output of the joining
cial database systems as it requires small code footpints Phase.
various preference functions, (2) Unlike [14], [2%}refJoin Sections IV-A - IV-D discuss the four phases BfefJoin
does not assume the existence of any indexing data structuwre generic way that can support a wide variety of prefer-
making nor geared towards producing progressive outpatce functions. Section IV-E gives the pseudo-code for the
insteadPreJoin aims to support basic join queries that stilPrefJoin algorithm. Section IV-F gives three case studies of
lack the awareness of various preference functions, (3) ®@nefloin namely, skyline k-dominance and multi-objective
top of all other approache®refJoin does not only employ preference functions. Cost analysis ferefJoinis presented
elegant early punning techniques, but also, utilizes som@&min Appendix A.

Fig. 2. Phases dPrefJoin Algorithm

IV. PRERJOIN: A PREFERENCEAWARE JOIN OPERATOR

Skyline [3] | K-dominance [5]] Multi-objective [2]
Plocal Skyline Skyline Multi-Objective
Ppairwise Skyline Skyline Multi-Objective
Prefine null K-dominance Multi-objective
TABLE 1l

SETTING OF Piocat, Ppairwises AND Prefine FORSKYLINE,
k-DOMINANCE, AND MULTI -OBJECTIVE PREFERENCES

A. Phase I: Local Pruning

Phase | filters out those tuples, from each input relation,
that are guaranteed to be not in the final preference answer.

The output of Phase |, i.e., the set of non-filtered tuplethes
local preference sefP(R;) for each input relatiorR;, which

is defined as the set of tuples such that each tugleCP(R;)

is a preferredtuple over all tuples inR; with the same join
attributes values. For example, Figure 1a highlights tipdeti
in thelocal preference set, for thdotelsandCruisesrelations
using the skyline preference method and lttation attribute

Prairwise does not have to be the samefsyet the choice of
Ppairwise depends orP. For example, per Table Il and as will
be detailed in Section IV-F, iP is askyline k-dominanceor
multi-objective Ppqirwise Would beskyling k-dominanceor
skyling respectively.

For a local preference tuple of bucket B in relation R,
DB(t) is computed by comparingwith the first tuplet’ of
each hash buckd®’ in relationR, whereB’ # B. Three cases
may occur:

« Case 1’ is preferred ovet with respect toP ,girwise- IN
this case, we add buckét’ to DB(t) as this means that
there is a tuple iB’ that is preferred ovet. If Ppyirwise
is transitive, we guarantee that no other tuplesBirtan
be preferred ovet’, thus no further preference checks
are needed for other tuples i#’. On the other side, if
Prairwise 1S NOL transitive, we proceed to compareith
the next tuple inB’, and act accordingly based on our
three cases.

» Case 2:t is preferred overt’ with respect toP pirwise-

as the joining attribute. Phase | has the following two main
steps: (a)Hashing where Phase | scans each input relation
R and utilizes a hash functioh, based on the equality join
attributes, to hash each tuple= R; to its corresponding hash

In this case, we add bucké to DB(t') as this means
that there is a tuple inB that is preferred over’. If
Prairwise 1S transitive, we guarantee that no other tuples
in B’ can be preferred ovet thus no further preference
checks are needed for other tuplesBi. On the other

bucket. For simplicity, we build aeparatehash buckeB for
each value of the equality join attributes. (fx)cal preference

computation for each relatior?;, where Phase | employs a
preference functioP;,..; over the set of tuples in each hash .
bucket B € R, separately. It is important to note here that

Piocar does not have to be the same7asyet the choice of

Piocar depends onP. For example, per Table 1l and as will

be detailed in Section IV-F, iP is askyline k-dominanceor
multi-objectivepreference functions?;,..; would beskyline
skyling or multi-objective respectively.

The main idea of Phase | is that any tuple R; that is not
preferred, with respect t®;,..;, over other tuples i?; with
the same value in the equality join attribute, should berétie
out as it has no chance of being preferredApx R; with
respect toP. As ¢ is not preferred toP;,..;, there must be
another tuple’ in the same hash buckét of ¢ that is better
thant. This means that when joining; with relation R;, the
result oft’ X r;, r; € R;, will be preferred over X r;. Such
early pruning oft saves the overhead of consideringt later
steps.

B. Phase IlI: Data Preparation
Phase Il takes, as input, the local preference S8 R;),

side, if Ppairwise IS NOL transitive, we proceed to compare
t with the next tuple inB’, and act accordingly based on
our three cases.

Case 3: Neithet is preferred over’ nor t’ is preferred
overt. In this case, we do not change neittieB(¢) nor
DB(t"). We proceed with next tuple fronB’, and act
accordingly based on our three cases.

C. Phase llI: Joining

Phase Il takes, as input, the local preferenceSBtR;)
where each tupleeLP(R;) is associated with a set of
dominating hash bucketd)B(t). Phase lll usesDB(¢) to
decide which local preference tuplese LP(R;) andt; €
LP(R;) should be joined together, to produce tendidate
preference set, denoted @andidatey,.r. This means that by
only consulting the sets of dominating hash buckets, PHase |
is able to decide if the joined tuple iscandidatepreference
tuple or not, rather than performing the join operationdad
by a preference check. Basically, two tuplesand s from
relationsR and S that satisfy the equality join condition will
be joined together only iDB(r) N DB(s)=¢. Unlike all other
phases, this phase does not directly depend on the preferenc
functionP, as it always has the same execution regardless of

for each relationR;, produced from Phase | and passes it t&-

Phase Il along with a set of information, termBdminating
hash bucketsD B(t), associated with each tuptes LP(R;).

For simplicity, we assume two input relatiod® and S,
then we extend our ideas to support arbitrary number of

Such information will be used later in Phase il to avoid pronput relations. Consider two local preference tupieand
ducing unnecessary joined tuples. The main idea of Phase Isifrom corresponding hash buckét of relations R and S,

to associate with each local preference tuplproduced from
Phase I, the set of its dominating hash buckBtB(¢), i.e., the
set of hash buckets iR that contains tuples preferred over
with respect to preference functi®,qirwise. Same aocat,

respectively. Two cases may arise:
o Case 1:DB(r) N DB(s)# ¢, i.e., the sets of dominating
hash buckets for and s are overlapping.In this case,
we are sure that the joined tupte= X s will not be

preferred, hence, we avoid joiningand s. To illustrate, Algorithm 1 PrefJoin

consider buckeB’ € DB(r) N DB(s). There must be 1
2! [*Phase | */

¢ 3. LP(R) «— ¢; LP(S) «— ¢
there must bes’ € B’, such thats’ is preferred oves. ‘5‘5
6

tupler’ € B’, such that” is preferred over. Similarly,

This means that the tuplé = »' X s’ must be preferred
overt=r ™ s.
o Case 2:DB(r) N DB(s)=

Function PrefJoin(Relation R, Relation S,Piocai Ppairwise Prefine)

Build hash buckets for relation® and S

: for each Hash BucketB in relation R do

LP(R) «+— LP(R)U ApplyPreferenceFunctions, Piocat)

7 end for

. . . 8: for each Hash BucketB in relation S do
¢, i.e., the sets of dominating o:

hash buckets for and s are disjoint In this case, the 10:

LP(S) «+ LP(S)U ApplyPreferenceFunctionH, Piocat)
end for

11: /* Phase II*/

joined tuplet = r X s is acandidatepreference tuple, i.e., 12
it is a preferred tuple by separately considering attriputel3:
in relations R and S. Hence, we perform the join and 14:

produce tuple. igf
The same idea is generalized o input relationsR;, R»
..., Ry, by joining the local preference tuples, to, ..., i;;

m from Ry, Ra, ..., Ry, only if DB(t1) N DB(t2) N

candidateanswer for the preference query.

D. Phase IV: Refining

19:

n DB() ¢ Hence consultlng the sets of domlnatlng hasﬁo: for each pair of tuples(s) where r in hash bucket B inR and s in the

buckets is sufficient to check if the to be joined tuple is alf
%

24:
25:

for each local preference tuple € LP(R) do
DB(r) « The set of hash buckets iR that include preferred tuple(s) over
r With respect toPpqirwise Preference function

end for

for each local preference tuple € LP(S) do
DB(s) < The set of hash buckets ifi that include preferred tuple(s) over
s with respect toP,qirwise preference function

end for

[* Phase III*/

Candidateprey «— ¢

corresponding hash buckét in S do
if (DB(r) N DB(s)=¢) then
Add r X s to Candidatep,ef
end if
end for
/* Phase IV*/

26: if Prefine = Null then

Phase IV takes, as input, theandidate preference set, 27:
Candidatey,.y, produced from thgoining phase, and finds 33:
the final preference answer for the preference funcin 30:

return Candidatepyey
else

return ApplyPreferenceFunctionf{andidatep,cf,Prefine)
end if

Simply, Phase IV employs a preference funct®n ¢;,. over
the set of tuples in the candidate preference set produoed fr
Phase IIl. Each tuplethat is preferred with respect @, fine

each pair of tuplesr(s) wherer in hash bucket B inR ands

is a final preference tuple fgP. It is important to note that in the corresponding hash buck®tin S. In this iteration, we
Prefine does not have to be the same Asyet the choice computer X s, and add its result t@andidate,,.; only if

of Prefine depends orP. Specifically,P,csine iS chosen to DB(r) N DB(s)

= ¢ (Lines 19 to 24 in Algorithm 1). Finally,

apply the preference computations that could not be pushigdPhase IV, if P, fine is null, we returnCandidate,,.; as
before the joining phase. For example, per Table Il and ds withe final answer for preference functigh, otherwise, we

be detailed in Section IV-F, iP is askyling k-dominanceor
multi-objective P, rine Would benull, k-dominanceor multi-
objective respectively.
E. PrefJoin Pseudocode

Algorithm 1 gives the pseudo code of threfJoin algo-

apply the preference functio®,.s,. over all entriens in
Candidatepr.r to produce the final answer f@? (Lines 26
to 30 in Algorithm 1).

F. Case Studies
In this section, we show the strength BfefJoin by giv-

rithm, presented for two relation® and S, for simplicity.
The input to the algorithm is the two input relatiofs and
S along with the three preference functio®s,cq:, Ppairwise

ing three diverse case studies, namaliyline [3], multi-
objective[2] and k-dominance skyling5]. Table Il summa-
rizes thePiocal, Ppairwises aNdPrerine for these preference

and P,.rine that are set based on the desired preferenfunctions. We use the SQL query presented in Section |, and

function P, i.e., per Table Il forskyline k-dominance and

multi-objectivepreference functions. The algorithm starts bgxample. Generally speaking, we $8t,c.;, P

relationsHotelsandCruisespresented in Figure 1 as a running
pazrwzsea and

executing Phase |, i.e., building the hash buckets and coff,. to P.

puting thelocal preference set€P(R) and LP(R) for the

1) Skyline: The skyline preference method returns objects

input relationsR and S, respectively. This is achieved byin a data set that are not dominated by (i.e., not strictlyseor
applying the preference functid®,..; over each hash bucketthan) any other object in the data. Formally, given a dataset
in both input relations (Lines 3 to 10 in Algorithm 1). Therew D of [-dimensional tuples, akyline query finds each tuple
proceed to Phase I, where we compute the set of dominatingsuch thatf ¢ € D; s.t., t'.p; is better than or equal to

hash bucket® B(r) for each tupler € LP(R) and DB(s)
for each tuples € LP(S). DB(r) and DB(s) are computed
as the set of hash buckets R and S that include preferred
tuple(s) overr and s, respectively, with respect t8pqirwise

t.p;, for 1 < i <[andt’.p,, is strictly better thart.p,, for
at least one dimensiom. To supportskyline queries within
PrefJoin we setPocq; andPpairwise 10 Skyline Interestingly,

we setPr.rine t0 null, as eachcandidatepreference tuple

preference function (Lines from 12 to 17 in Algorithm 1)produced from Phase Il is guaranteed to H@al preference
Then, we proceed to Phase Ill, as we initialize the candiddtenction. This holds becuase the each tupler X s in the
preference setCandidate,,.; t0 be empty. We iterate overcandidatepreferece set could not be dominated. Tuples that are

Hotels Hotels

: Miami Hawaii Seattle I | Miami Hawaii Seattle |

| | [HId|Location] PIR[B HId |Location| P| R|B [HId|Location| PIR|B] | | ! [ELd]iocatior] PIRIBIDB [HIdllocation PIRIBIDB Id[location] PIR|BIDB | |

| 1 | Miami |43 |1 6 | Hawaii | 2| 2|2 11 | Seattle | 3|3 |1 , i 1 [Miamil4[3]I] S 6 |Hawaiil2|2]2 11 [Seattlel3[3]1] - 1|,

| 2 | Miami |4]2(3 7 | Hawaii | 5| 3|1 12 | Seattle |31 14| | | |2 IMiamil4l213| H 7 |Hawaii|5|3|1|M,S 12 [Seattle[3|114] -1,

I 3 | Miami [3]3 3 8 | Hawaii | 4 114 13 | Seattle (2134 \ , 3 |Miami|3|3 (3 |H,S 8 |Hawaii|4]1|4] S 13 |Seattld2|3 [4] H |1

I U - - - - = e — N —

\ | 2 [Miami [214]3] | | [0 | Hawaii| 5516 | | [ZZ] Seattie [2]2]3]| ']

| Miami |4 10 | Hawaii |54 17 15 | Seattle |5]|5]6 : R ,,,,,,,,,,,,,,,Qr,u,ls,elg,,,,, ,,,,,,,,,,,,

| ,) Miami Hawaii Seattle !

R e L L TR ! I [cId]iocation] PIRIDIDB CId [location| PIRIDIDB CId [location] PIRIDIDB | |
Cruises ' 1 [Miamil4]3|3|H.S 6 |[Hawaii|5]3[1|M.S 11 [Seattlel4[3[1] =

: 2 |Miamil5 23] H 7 |Hawaii|3|2]2] - 12 |Seattle|5|1|4| H|,

,,,,,,, . ami Fonms = 3 bed

: Miami Hawaii Seattle ! = f,l\:hfmfff,], ,S, __ ,8, = ?w,ali ‘f ,1 ,4 ,,,,, %% — 'f ,4, _— :

\ | [CId [Location| I R|D CId |Location| P|R|D cId |Location| P|R|D :

| 1 | Miami | 4] 33 6 | Hawaii 5.23’ 7 11 | Seattle |43 1) h f | | b dk d

| 2 | Miami |5|2 (3 7 | Hawaii |3 12 12 [Seattle |51 4 i i i i i — i i

N a5 25 £ Hawail (7.2 2 e S| Fig. 4. Phase Il foiSkyline multi-objective an ominanceQueries

I

) 4 | Miami [4]4]6 9 | Hawaii| 5]2]8 14 | Seattle [4|4 !

| | C5 [Miami 141315 LIH [Hawaii [71516] 15 | Seattle [61516] | |

! |

|

need to joinhy, ¢;. Then, we proceed with the next cruisg

Fig. 3. Phase | foSkyline multi-objective andk-dominanceQueries ~ With DB(Cs)={H}. SinceDB(h1) N SB(c2) = ¢, we do the
actual join and add the results of Phase Ill. Figure 5a gives
the candidatepreference set.

preferred to tuple:, over preference attributes i, are stored ~ Phase IV No computations are needed in this phase, as
in hash bucketDB(r). Similarly, those tuples that dominateeach candidatepreference tuple is guaranteed to be in the
s, over preference attributes if\, are only stored in the hashfinal answer.

buckets DB(s). Since DB(r) and DB(s) are disjoint, for ~ 2) K-dominance Skyline: A k-dominance preference
each candidate preference tuple, it is impossible to find aquery [5] redefines the traditional skyline dominance ietat
single joined tuple that dominatésin both relationsR and to consider only: dimensional subspaces, whérés less than

S. Thus,r X s can not be dominated faskyline preference or equal to the total number of preference attributes. Flyma
query, and it is a confirmed final answer. (A formal correcsnegiven a datase of I-dimensional tuples, &-dominance

proof is presented in Section VI). query finds each tuple, such thatf ¢’ € D; t'.p; is better
Example. We apply PrefJoin algorithm for skyline prefer- than or equal ta.p; for at leastk dimensions, and’.p,, is
ence function as follow: strictly better thart.p,,, for at least one dimensiom.

Phase | Figure 3 shows the hash buckets for the input Using k-dominanceor P,.,; may discard tuples that are
relations, Hotels and Cruises presented in Figure 1 whereneeded to eliminate non-preferred tuples in the final answer
three hash buckets are built as one for each value of tpet, becaus&-dominancedominance relation is not transi-
location attribute, i.e.Miami, Hawaii, and Seattle The set tive [5]. For example, consider tuples=(1,8,1,2,3), and
of discarded tuples are highlighted for each bucket in the tw2=(2,8,2,1,4) in hash buckeB, and tupler'=(1,8’,3,1,2)
input relations. Other tuples represents the local prafare in hash bucketB’ in relation R, and tupless=(1,B,1,2,3)
LP(R), which is the output of Phase I. The hotel tuple# hash bucketB, and s'=(1,8’,1,2,3) in hash bucket
ho=(9,Hawaii,5,5,6) andh;, = (10Hawaii,5,4,7) are locally B’. For 2-dominance skyliner; 2-dominatesr,, hence
dominated by hotehs=(6, Hawaii,2,2,2), hence, they are notas described in Section IV-A, we remove tupte from
in the local preference set of Hawaii hash bucket. We can sé€(R). In Phase I, we calculate dominating hash buck-
that joininghg or hyo With any cruise irHawaii (i.e.,cg to ¢10) €ts:DB(r1)={B'}, DB(r')=¢, DB(s)=¢, DB(s')=¢. Hence,
will be dominated by joinings with the same cruiséhase Il Phase Il producesandidatepreference sets; X s, 7' X
Figure 4 gives the end result of Phase Il after computireg}. In Phase IV, Asy’ X s" 2-dominates X s, the final
DB(t) for all tuples in theHotelsandCruisesrelations where preference set igr, X s'}. However,ry X s 2-dominates
M, H, andS refer to hash bucketdiami, Hawaii, andSeattle " X s’, therefore the corredinal answer should be empty.
respectively. To compute the set of dominating hash buckdigerefore, we could not usk-dominancefor Pjc.;, and
for hotel h; = (1M,4,3,1), we comparé; with hotels inH Ppairwise- THUS, to be able to discard tuples in Phase I, we
and S hash buckets. For the firdi hotel hg = (6H,2,2,2), can use any transitive preference functignsuch that for all
neither h; dominateshg nor hg dominatesh; (Case 3), so possible input relation, the output of the transitive fumictf
we do not change the set of dominating hash tupleshfor must be superset of thie-dominancepreference. Therefore,
andhg. Then, we proceed with;. We find thath; dominates We Set Piocar @nd Ppairwise 10 Skyline Setting Pjocq; and
tuple h; (Case 2). Hence, we add to DB(h7). As no other Ppairwise 10 Skylinewould produce a superset of the answer
hotel within H hash bucket can dominakg, we proceed with set, therefore, to eliminate tuples that are dominated with
hotels fromS hash bucket. Sincg;; dominatesh; (Case 1), respect tok — dominance, we setP,.ri. to k-dominance
we addS to DB(h;). Then, there is no need to continudA formal correctness proof is presented in Section VI).
checking other hotels i® as none of them can be dominated Example. We apply PrefJoin for k-dominancepreference
by hi. Phase Ill From Figure 4, the set of dominating hastiunction as follow: Phases I,Il, and Il As we are setting
buckets forh; is DB(h1)={S}. Also for cruisec;, we have Pjocqi and Ppairwise t0 Skyling exactly the same askyline
DB(c1)= {H,S}. SinceDB(h1) N DB(c1) # ¢, there is no preference function, Phases 1,11, and Il proceed as pteden

the final preference set for the givemulti-objective pref-

Hid Cid Hp Hr Hb Cp Cr Cd Hid Cid Hp Hr Hb Cp Cr Cd Hid Cid Hp+Cp Hr Hb Cr Cd R i L
z g HIILIA e 3 L2 3 1132 s 1fetefatatifals erence function. As an egample, the qandldate joined tuple
sotolsiotelats [elrlsisiststels [alstotssterets te = 1 X e = (1Miami4,3,1,2Miami5,2,3) cannot be
IR EAEI EL e IR EAEIEI R EY IR E1 I] T an answer as it is dominated by joined tuplg X ¢g =
71 8 3| 1[4 1 71 8 31141 7| 8] 5 1 1 i
8721432; 8721432; 874;§i2; (G’M’Z’Z'Z’GM’Z’&J')‘
8|8 4|1|4]|4]1|4 8|8 4|1|4]|4] 1|4 88| 4|4|1[4|1]4
11 33|14 11 3|3|1[4 11 3
EHETERIE 111z 315 115] 1] 4 T EGE R V. JOIN ORDER
11]13] 3|13 [1]3] 3[4 11]13] 313 [1]3] 3[4 11]13| 3| 1] 3] 4
SEIEIAEIEEI! EIEIATACIEI] TR The pseudo code of oWrrefJoin algorithm, given in Sec-
12]12|3|1]|4|5]| 1] 4 12]12/3|1]|4|5]| 1] 4 1211213 | 5| 1| 4| 1| 4
12133 114|384 121133 114|354 12]13[3 | 3 1] 4] 5] 4 tion IV-E, highlights a very important observation, stentme
13[1112 13144 3] 1 13[1112 13144 3] 1 1311112 41 31 41 31 1 . .
out from the fact that of reducing the cost of computing the
(a) skyline b) . © Miult. preference over the fewer joined results than other appesac
dominance objective Basically, the set of dominating hashing buckdi&3(s), is

computed completely for each tuple in R, where R is
Fig. 5. Example for Phase IV the outer input relation to the join operator. Then, for the
inner input relationS, we only partially compute the set of
dominating hash bucket®)B(s), for each tuples € S. The
earlier in Figure 3 and 4 for thekyline Phase IV The main idea is that for each tupkec S, we compute only the
highlighted tuples in Figure 5b resembles fimal preference dominating hash bucketamongthe ones inD B(r), wherer
set for5-dominancepreference function. As an example, thés the current tuple under consideration from relatinThis
candidate joined tuplg. = hy X ¢ = (1 Miami4,3,1,2, observation means that the overall performancePfJoin
Miami,5,2,3) cannot be an answer for a five-dominance skyan be affected by the join order, i.e., haviRg< S versusS

line query as it is 5-dominated by joined tuple X c; = X R. It is the objective of this section to estimate the cost of
(6,Hawaii,2,2,2,7Hawaii,3,2,2). computing the sets of dominating hash buckets for both input

3) Multi-objective: A multi-objectivepreference query [2] relationsR and .S, should each relation be considered as an
combines subsets of preference attributes using monotanger or an inner. Then, we use these costs to decide which
scoring functions, and performs a skyline over the new trarnjsin order will be more beneficial to the overall performance
formed combined attributes. Formally, given a datd3eif [- of PrefJoin
dimensional tuples, and monotone objective functions over Cost of computingD B(R) for the outer relationR. For
tuple’s attributesf,, fo, ..., fn, @ multi-objective query finds each tupler € R, wherer is located in hash buckeB,
the set of tuples that are not dominated with respect to ttilee worst case cost of computingB(r) can be calculated
objective functions. For our motivating example of Figure by estimating the cost of comparingpair wisely with each
a multi-objectivequery may sum the hotel price and cruisether local preference tuple in each other hash buBkdtom
price into a single attribute and performs the skyline owe fi relation R, i.e., B’ # B. Since the cost of comparing two
attributes:total price, hotel rating, hotel distance to beachuples is proportional to the number of preference attabut
cruise rating, and cruise days. the total cost for computingd B(r) is Cost(DB(r))= Y g

To supportMulti-objectivequeries withinPrefJoin we set (|B|xn) VB, s.t.,r ¢ B, where|B| is the cardinality of hash
the three preference functiorBiscar, Ppairwise» aNdPrerine bucket B in relation R, andn is the number of preference
to be multi-objectivepreference function. It is important toattributes in relationR. Summing up over all tuples iR,
note that as we do not have all the input attributes to thiee total cost for local preference set computation for oute
objective functions in each input relation, while evalogtthe relationR is estimated to b€ostpp(R) =, cost(DB(r)),
objective functions, we substitute preference attribdtesn Vr € LP(R).
other input relations by a constant value (e.g., zero). (At Cost of computingDB(S) for the inner relationS. For
correctness proof is presented in Section VI). each tuples € S, to be joined with tuple- € R, wheres is

Example. We modify the SQL query given in Section I, tolocated in hash buckeB, the worst case cost of computing
sum the hotel price and cruise price into a single attribut®B(r) can be calculated by estimating the cost of compag¢ing
Hence themulti-objectivepreference function have five at-pair wisely with each other local preference tupldy located
tributes:total price, hotel rating, hotel distance to beach, cruisa hash buckets3 € DB(r). As the cardinality ofDB(r)
rating, and cruise days. We apg®refJoinfor multi-objective is significantly lower than the number of hash bucketsSin
preference function as follow: having s as an inner relation encounters much lower cost in

Phases |, II, and Ill proceeds askylinequery because the computing DB(S), than havingS as an outer relation. In
given multi-objective function does not include any obijeet our running example, the average cardinality of the sets of
function that combines attributes from the same relatioig{ F dominating hash buckets is 0.89, compared to 3 as the number
ure 3 and Figure 4). Figure 5b gives tbandidatepreference of hash buckets. Then, the total cost for computing(s) is
set, produced from the joining phase fidotels and Cruises Cost(DB,(s))= >z (|B]*m) VB, s.t., B € DB(r), where
relations, depicted in Figure 1. |B| is the cardinality of hash bucke® in relation.S, andm

Phase IV The highlighted tuples in Figure 5c resembleis the number of preference attributes in relatfinSumming

up over all tuples inS, the total cost for local preference sets not added td“inal,, and hence not reported BrefJoin

computation for inner relatiofi is estimated to b&ostpp(S)
=Y, cost(DB(s)), Vs € LP(S).
Using the above cost estimations, fefJoinalgorithm and

pseudo code is slightly modified to perform the cost estiomati

procedure right away after Phase |. BasicalyefJoin will
contrast two costs: (a) The cost of haviR@s an outer relation

which contradicts our assumption. []

B. Correctness oPrefJoinfor k-dominancequeries

The correctness oPrefloin for k-dominancepreference
function follows from proving that: (1) Alk-dominanceuples
over the joined relatiorR X S are reported from th€refJoin

plus the cost of having as an inner relation, and (b) The cosalgorithm, and (2) Any tuple returned from thRerefJoin

of having S as an outer relation plus the cost of havings

algorithm is ak-dominancepreference tuple over the joined

an inner relation. If the first estimated cost is lower, wet juselation R X S.
proceed withR as an outer relation, otherwise, we swap the Theorem 3:All k-dominancéuples over the joined relation

two relations to haves as the outer one.

V1. PROOF OFCORRECTNESS

This section proves the correctness of refJoinalgorithm
for the skylineg k-dominanceand multi-objective preference
methods. For simplicity, we limit the correctness proofumt
input relationsk and S.

A. Correctness oPrefJoinfor skyline queries

The correctness dPrefJoinfor skyline preference function
follows from proving that: (1) All skyline tuples in the joéual
relation R X S are reported from th@refJoinalgorithm, and
(2) Any tuple returned from thBrefJoinalgorithm is a skyline
over the joined relatio? X S.

Theorem 1:Any tuple » X s that is a skyline over the
relation R X S, will be reported by the PrefJoin algorithm.

Proof: Assume that there exist a tupler X s that is a
skyline over the relatio®® X S. However,t is not reported by
the PrefJoinalgorithm. Throughout th®refJoinalgorithm, if
t is not reported, then this means that either tupler s (or
both) was discarded ihocal Pruningor Joining phases. In
Local Pruningphase, a tuple is only discarded if it is not a
local preference tuple, i.e., there is a tuplec R, and in the
same hash bucket of such that’ dominates:. Sincer andr’

R X S are reported from th@refJoinalgorithm.

Proof: As we setPi,cqr, andPpgirwise 10 Skyling from
theorems 1 and 2, theandidatepreference set contains all
skyline tuples over the preference query. As the answer of
k-dominancepreference function is a subset of the answer
of skyline preference function [5]PrefJoin returns all k-
dominancepreference tuple. []

Theorem 4:Any tuple returned from th@refJoinalgorithm
is a k-dominancepreference tuple over the joined relatidh
X S.

Proof: As we setP,.fin. t0 k-dominanceover the
candidate preference set which contains all tuples in the
answer of thek-dominancepreference set (Theorem 3), each
tuple returned fronfPrefJoinis ak-dominancereference tuple
over the joined relatiorR X S.]

C. Correctness oPrefJoinfor multi-objectivequeries

The correctness oPrefJoin for multi-objectivepreference
function follows from proving that: (1) All preference tigd
with respect tomulti-objectivequery in the joined relatio
X S are reported from th&refJoin algorithm, and (2) Any
tuple returned from th@refJoinalgorithm is a multi-objective
preference tuple over the joined relatiéh S.

Theorem 5:Any tuple ¢ that is a preferred tuple with

are in the same hash bucket, they have the same value forréspect tamulti-objectivequery over the relatio® X .S, will

join attribute, thus”’ X s dominates- X s, which contradicts

our assumption that tuple X s is a skyline over the relation

R X S. The same contradiction holds fer In Joining phase,
tuple r X s is not added only if tuples is dominated in the

be reported by th&refJoinalgorithm.

Proof: Assume that there exists a tuplethat is a
preferred tuple with respect tmulti-objectivequery over the
relation R X S. However,t is not reported by thé’refJoin

same buckeB where tupler is dominated. Hence, there arealgorithm. First assume thatr X s is a preferredtuple, yet

other tupless’ € B’, andr’ € B’. Thus, the joined tuple’

it is not added to thecandidatepreference set. Throughout

X s’ dominates- X s, which contradicts our assumption. Wethe PrefJoin algorithm, if ¢ is not added to thecandidate

conclude that the assumption tltas not reported byrefJoin
is not possible.]
Theorem 2:Any tupler X s that is reported by thErefJoin
algorithm is actually a skyline over the relatidhi} S.
Proof: Assume tuplet=r X s is reported by the
PrefJoin algorithm, but there is another tuplé=r’ X s’ that
dominatest. Assume that’ € bucket B’ of relation R and

preference set, then this means that either tupler s (or
both) was discarded ihocal Pruningor Joining phases. In
Local Pruningphase, a tuple is only discarded if it is not
a local preference tuple, i.e., there is a tuple € R, and
in the same hash bucket of such that dominates- over
preference attributes in relatid®y and for other attributes iy,
we set them to constant values for tupteendr’ and objective

s’ € bucket B’ of relation S. Using the property of skyline functions are monotone. Sineeand’ are in the same hash
dominance relation;’ must dominate, ands’ must dominate bucket, they have the same value for the join attribute, thus
s. However, the algorithm adds a tuple Fonalsy,, (Line 22 X s dominates: X s, which contradicts our assumption that
in Algorithm 1), only if s is not dominated in any buckettupler X s is should be added to thmandidatepreference set.
where r is dominated, including buckeB’ which contains The same contradiction holds ferln Joiningphase, tuple X
tuple s’, as we assume that dominatess. Thereforey X s s is not added only if tuple is dominated in the same bucket

B where tupler is dominated. Hence, there are other tuptes
100000

1000

€ B', andr’ € B'. Thus, the joined tuple’ X s’ dominates i :
r M s, which contradicts our assumption. This proves twat = ' 0o M
X s is added tocandidatepreference set, if is a preferred §] T g0

tuple. Then, as we sé?,. i, to multi-objective thent must % 1007 = |
be reported if it is preferred with respect toulti-objective ¢ ™ oo
query. We conclude that the assumption th& not reported Y4 6 8 10 1 e s s 0 12
by PrefJOin iS not pOSSible. [} Number of Attributes Number of Attributes

Theorem 6:Any tuple returned from th@refJoinalgorithm _ _
(a) Comparisons (b) Time

is a multi-objectivepreference tuple over the joined relation
RIXS.

Proof: As we setP,.sine t0 multi-objectiveover the
candidate preference set which contains all tuples in the

answer of thenmulti-objectivepreference set (Theorem 5)'eaC|?nore computations to be performed in Phase IV because

tuple returned fromPrefJoinis a multi-objectivepreference e cive preference attributes are not computed untishe
tuple over the joined relatiod > 5. Figure 6d gives the wall clock time in log scale, &kyline
VIl. EXPERIMENTS preference query, which shows tHatefJoin has around two

orders of magnitude better performance than other algosth

In this section, we analyze the performance of our preye wal clock time for multi-objective and k-dominance
posed frameworkprefJoin compared with our two closestgp gy similar behavior. Based on these experiments, we can

related works, the global skyline [13], dgnoted @S and onclude that, with the increase of the data sResfJoinis
FlexPref [19], denoted aBlex All our experiments are based,, . more scalable than its competitors, and the perforenanc

on actual implementation of the three algorithiefJoin oain reaches up to three orders of magnitude when the data

GS and Flex, inside PostgreSQL [24]. Unless mem'o,neaize exceeds 1M. Due to space limitations, we run the next
otherwise, our data set is synthetically generated for ot o, o iments using only the skyline preference functioris Th
relations R and S, where S is the inner relation, the ratio is also allow us to hav&Sin the experiments.

between the cardinality of both relations is 100, iL§d,:100,
the cardinality of relatior is 1M, the number of groups (i.e., B. Number of Preference Attributes

distinct values for the join attribute) is 5K, and the caedity ~ Figure 7 studies the effect of the number of preference
of the local preference set in each relation is 10%. Also, Wgtributes on the performance BfefJoin GS andFlex as we
assume the set of preference attributes is distributedyeben increase the number of preference attributes, in eachiaelat
tween the two input relations, with a default of three atttés from two to six, i.e., increasing the total number of prefm
in each relation. We use the number of comparisons and watiributes of the output tuples from four to twelve. Thisedity
clock time as our performance measures. All experiments af@reases the cardinality of the final preference set from 2K
executed on 2.0 Ghz Intel processor with 1 GB of RAM. to 65K. For all algorithms, the number of comparisons and
As we will see,PrefJoinalways outperform&SandFlex execution time increase with the increase of the number
with at least one order of magnitude. That is why all thgf preference attributes. HoweveRrefJoin exhibits better
experiment figures depicted in this section are plotted wiitalability as it avoids applying the preference function o

a log scale in terms of the number of comparisons or walie preference attributes of the joined tuples.
clock time.

Fig. 7. Number of Preference Attributes

C. Join Cardinality

A. Scalability This section investigates the effect of the join cardigalit
Figure 6 gives the behavior of the three algorithms, wham the execution time and number of comparisons. The join
increasing the cardinality of the inner relatichfrom 50K cardinality depends on: (a) the number of groups in each
to 6.4M, while keeping the ratio between relatioRsand relation (i.e., the number of distinct values for the eqgyali
S intact. Figure 6a gives the number of comparisons in Iggin attribute), and (b) the join ratio (i.e., how many tupia
scale for a skyline preference function, the order of magtet S will be joined with a single tuple fronR).
difference between our proposed algoritPmefJoinand other 1) Number of Groups:Figure 8 studies the effect of in-
algorithms is due to the fact th&refJoin avoids applying creasing the number of groups (i.e., distinct values of the
the preference function over the joined tuples, and uslide join attribute) from 300 to 10K for input relations, on the
dominance relation between tuples in each relation. Silpjla total runtime and the comparisons fétrefJoin Flex and
Figures 6b and 6¢ give the number of comparisonsikfor GS algorithms. With the increase of number of groups, the
dominanceand multi-objectiverespectively. AsGS is only execution time and comparisons for all algorithms decrease
limited to skyling we run our experiments usinglex and exponentially where the size of the final preference set de-
PrefJoin The speedup for multi-objective query is smaller thaoreases from 260K to 5K. In the mean time, increasing the
skylineg and k-dominancepreference function, as it requiresnumber of groups increases the cost of computing the sets of

10000

1e+006 Flex —— . 1e+006 KFlex —— 1e+006 MFlex —— Flex —— H
S 100000 GS —(— S 100000 | KPrefdoin —@— r S 100000 | MPrefJoin —@— | 1000 GS ——
@ 10000 PrefJoin —@— 2 10000 2 10000 § - 100 PrefJoin —@—
2 1000 b o 1000 » 2 1000 H)
é 100 g 100 g 100 E
E 10p E 10 E 10
3} 1 o 14 o 16
0.1 0.1 0.1 0.01
10 40 160 600 10 40 160 600 10 40 160 600 10 40 160 600
Data size *(10%) Data size *(10%) Data size *(10%) Data size (10%)
(a) Skyline (b) K-dominance (c) Multi-objective (d) Skyline

Fig. 6. Scalability

100000

1e+06 &
100000

g g
2 10000 —] 1000
o) o
g 1000 g g 10055
2 100 F 2 10
8 10 8 1 Flex 8~
1 : 0.1 PretJoin —@ 0.01
640 2560 10240 640 2560 10240 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Number of groups Number of groups Percent of local preference set Percent of local preference set
(a) Comparisons (b) Time (a) Comparisons (b) Time
Fig. 8. Number of Groups Fig. 10. Percentage of Local preference Sets
1406 e (b) utilizing the dominance relations iR to avoid unneeded
s ‘fgggg Prefics o i dominance checks i.
@ pé
5 1000 0
£ 100 £ D. Percentage of Local Preference Set
£ B
8 "1’ Figure 10 gives the effect of increasing the percentage of
0.1 the local preference set for relatiois and S from 10% to
1 4 16 64 256 . . .
Join ratio Join ratio 90%, on the total runtime and comparisons RvefJoin Flex
andGS We set the cardinality of relatiof to 200K. Hence,
(a) Comparisons (b) Time the local preference set for relatighincreases from 20K to
180K. With the increase of percentage of local preferente se
Fig. 9. Join ratio the execution time and comparisons for all algorithms iaseg

yet PrefJoin consistently, has at least two orders of magnitude
better performance than botBS and Flex algorithms. This
dominating hash buckets for local preference tuples, there performance is due to the fact that as the final preference
the speedup dPrefJoindecreases with respectftexandGS sets increase exponentially from 8K to 100K, omtyefJoin
algorithms. Overall, thePrefJoin algorithm exhibits at least can utilize the dominance relations from relatiénto avoid
two orders of magnitude better performance than léaand preference comparisons i
Flex algorithms.)
2) Join Ratio: Figure 9 increases the join ratio betweeff- Join Order
relationsk and S, i.e., how many tuples i’ will be joined Figure 11 studies the effect of the join order on the per-
with a single tuple fromR. The cardinality ofR is set to 20K, formance of thePrefJoinalgorithm. We execute thBrefJoin
while the join ratio is increased from 1:1 to 1:256. With thalgorithm on R X S, i.e.,, R is an outer relation ands
increase of the join ratio, execution time and comparisfors, is the inner one, andS X R, termed asRPrefJoin As
all algorithms, increase as the size of the final prefererte sost computations of the set of dominating hash buckets are
increases from 1320 to 111RrefJoin consistently, has one to executed in the outer relation of the joiRrefJoin shows an
two orders of magnitude better performance than &®and order of magnitude improvements for the running time and
Flex algorithms, for all join ratios. This is due to: (a) The finatomparisons with the increase of the cardinality of refatso
preference set size increases; witlkefJoinavoids preference from 50K to 6.4M. This confirms the importance of the cost
comparisons over these tuples, the other algorithms d@ndt, estimations discussed earlier in Section V. Due to accurate

1000

RPrefdoin —X— RPrefdoin —X—
—~ 1000 PrefJoin PrefJoin —@—
5 \ 100
k73]
5 100 @ 10
2 3
5 E
] 10 = 1
o 1 0.1

q
0.19 0.01
50 200 800 3200 50 200 800 3200
Data size (K) Data size *(K)
(a) Comparisons (b) Time
Fig. 11. Join Order

g G S —5—
1 PrefJoin PrefJoin —@—
s O
2 3
: :
£
o
o

2 4 8 2 4
Data size *(1 05) Data size *(1 05)

(a) Comparisons (b) Time

Fig. 12. Three input relations

cost estimationPrefJoin will decide to useR as the outer

increases dramatically, and that shows us BrafJoinis way
preferable for multiple input relations.

VIIl. CONCLUSION

This paper presentd@refloin an efficient preference-aware
join query operator, designed specifically to deal with gref
ence queries where the set of preferred attributes reside in
more than one relation. The main ideaRrefJoinis to make
the join operator aware of the required preference funation
ity, and hence inject the ability to early prune those tuped
have no chance of being a preferred objBecefJoinconsists of
four main phased:.ocal Pruning Data Preparation Joining,
and Refining that discard irrelevant tuple from the input
relations, prepare tuples for next phases, joins non-giune
objects, and refine the join result respectively. An inténgs
characteristic ofPrefJoinis that it aims to join only those
tuples that are guaranteed to be an answer, and hence: €3) sav
computation costs by not joining unnecessary objects, and
(b) saves computation cost in pruning, by applying the prefe
ence function over those objects that may needlessly bedoin
PrefJoin supports a variety of preference function including
skyline, multi-objective and.-dominance preference queries,
by appropriately defining th®;,cq1, Ppairwise, aNdPrefine
for each preference function. The correctnesP@fJoinwas
proved as it returns all preferred tuples and all returngdesu
are preferred. Experimental evaluation based on a system
implementation ofPrefJoin and its competitors [13], [19]

relation, and hence achieve an order of magnitude perfazenafside PostgreSQL show th&trefJoin consistently achieves

improvement in lieu of choosing as the outer relation.

F. Multiple Input Relations
Figure 12 gives the performance BfefJoin GS andFlex

one to three orders of magnitude performance gain over its
competitors in various scenarios.

REFERENCES

for three input relations when increasing the size of eacH] M.J.Atallah and Y. Qi. Computing all skyline probabitis for uncertain

relation from 100K to 800K. With the increase of input size,

the number of comparisons and execution time increase
all algorithms. We can see th&refJoin reaches up to four

orders of magnitude better performance for the comparisor@
and three orders of magnitude better for the time than other

algorithms. This is mainly because tleandidatepreference
set increases exponentially with the input size@8andFlex
algorithms.

data. InProceedings of the ACM Symposium on Principles of Database
Systems, PODQ2009.

fem] W.-T. Balke and U. Giintzer. Multi-objective Query Pessing for
Database Systems. Rroceedings of the International Conference on
Very Large Data Bases, VLDR004.

S. Borzsonyi, D. Kossmann, and K. Stocker. The SkyliDperator.
In Proceedings of the International Conference on Data Engiing,
ICDE, 2001.

C. Y. Chan, P.-K. Eng, and K.-L. Tan. Efficient ProcessifgSkyline
Queries with Partially-Ordered Domains. Rroceedings of the Inter-
national Conference on Data Engineering, |ICDFD05.

(4]

Contrasting this experiment with the similar one given inl>!
Figure 9 that were designed for only two relations, we can
see that the performance gain achievediafJoinover other
algorithms is even better in case of three relations. Thifl
means thatPrefJoin is better equipped with multiple input
relations than other algorithms. This performance is due tp]
two main factors: (1) The progressive output behavior of
PrefJoin makes it easier to pipeline the result of one join torg)
be the input of another join operator, such behavior is not
found in other algorithms, and (2) Increasing the number 0[1‘9]
joined relations immediately results in increasing the ham
of preferred tuples which, as we have seen been seen in
previous experiments, badly affected other algorithms.

We could not run other experiments for more than thrééo]
input relations as the cost of executing bd®% and Flex

C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Zhahg.
Finding k-Dominant Skylines in High Dimensional Space.Froceed-
ings of the ACM International Conference on Management ofaDa
SIGMOD, 2006.

C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Zhahg.
On High Dimensional Skylines. IfProceedings of the International
Conference on Extending Database Technology, EDRD6.

S. Chaudhuri and L. Gravano. Evaluating Top-k Selecti@ueries. In
Proceedings of the International Conference on Very LargéaBases,
VLDB, 1999.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. SkylineiwPresorting.

In Proceedings of the International Conference on Data Enging,
ICDE, 2003.

R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Atgbms
for Middleware. InProceedings of the ACM Symposium on Principles
of Database Systems, POD#ges 102-113, Santa Barbara, CA, June
2001.

P. Godfrey, R. Shipley, and J. Gryz. Maximal vector caortagion in
large data sets. IRroceedings of the International Conference on Very
Large Data Bases, VLDB005.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

I. F. llyas, W. G. Aref, and A. K. Elmagarmid. Joining Read Inputs in
Practice. InProceedings of the International Conference on Very Larg
Data Bases, VLDB2002.

I. F. llyas, W. G. Aref, and A. K. ElImagarmid. Supportifi@p-k Join
Queries in Relational Databases. Pmoceedings of the International
Conference on Very Large Data Bases, VL2B03.

W. Jin, M. Ester, Z. Hu, and J. Han. The Multi-Relation@kyline
Operator.
Engineering, ICDE 2007.

W. Jin, M. D. Morsel, J. M. Patel, M. Ester, and Z. Hu. Esxaing Sky-
lines in the Presence of Equijoins. Rroceedings of the International
Conference on Data Engineering, ICDE010.

W. KieBling. Foundations of Preferences in Databasste3ys. In

APPENDIX

A. Cost Analysis oPrefJoin

In this section, we compare the cost of computing prefer-
ence queries for the proposed algorithPmefJoin and Flex-
Pref[19]. We limit our discussion only tekylinepreference.
InProceedings of the International Conference on Data FOr two input relations? with cardinality of| R| tuples and
relation S with |S| tuples. We denote the skyline tulples in
relation R and S as Sky(R), and Sky(S), respectively. For
simplicity, we assume a uniform distribution of skyline ke
in each input relation ove hash buckets, i.e., the cardinality

Proceedings of the International Conference on Very LargéalBases, of skyline tuples in hash bucke® of relation R is \Ski(R)_

VLDB, 2002.

D. Kossmann, F. Ramsak, and S. Rost. Shooting StarsenStky:
An Online Algorithm for Skyline Queries. IrProceedings of the
International Conference on Very Large Data Bases, VL.RB02.

G. Koutrika and Y. E. loannidis. Personalization of @es in Database
Systems. InProceedings of the International Conference on Data
Engineering, ICDE 2004.

J. Lee, G. won You, and S. won Hwang. Personlized Top-kliS&
Queries in High-Dimensional Spackformation System$4(1):45-61,
2009.

J. J. Levandoski, M. F. Mokbel, and M. Khalefa. FlexP#efFramework
for Extensible Preference Evaluation in Database SystémBroceed-
ings of the International Conference on Data Engineeri@DE, 2010.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Starke k Most
Representative Skyline Operator. Rroceedings of the International
Conference on Data Engineering, ICDEO007.

S. Michel, P. Triantafillou, and G. Weikum. Klee: A framerk for
distributed top-k query algorithms. MLDB, 2005.

A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. $tevi Supporting
Incremental Join Queries on Ranked Inputs. Aroceedings of the
International Conference on Very Large Data Bases, VIL.R&01.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressiyéinek
computation in database systemsACM Transactions on Database
Systems, TODSB0(1):41-82, 2005.

PostgreSQL: http://www.postgresql.org.

V. Raghavan and E. A. Rundensteiner. Progressive tremrieration
for multi-criteria decision support queries. IRroceedings of the
International Conference on Data Engineering, ICDED10.

C. Re, N. Dalvi, and D. Suciu. Efficient top-k query ewion on
probabilistic data. InProceedings of the International Conference on
Data Engineering, ICDE2007.

M. Sharifzadeh and C. Shahabi. The Spatial Skyline @ser In
Proceedings of the International Conference on Very Largéa[Bases,
VLDB, 2006.

M. A. Soliman, I. F. llyas, and K. C.-C. Chang. Top-k Quétrocessing

in Uncertain Databases. Proceedings of the International Conferencephase to savé(

on Data Engineering, ICDE2007.

D. Sun, S. Wu, J. Li, and A. Tung. Skyline-join in distutied databases.
In ICDEW, 2008.

K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressi®kyline
Computation. InProceedings of the International Conference on Very
Large Data Bases, VLDR0O01.

Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based Repraative
Skyline. In Proceedings of the International Conference on Data
Engineering, ICDE 2009.

P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. Ehbadi.
Parallelizing Skyline Queries for Scalable Distributidn. Proceedings

of the International Conference on Extending Database felcyy,
EDBT, 2006.

T. Xia, D. Zhang, and Y. Tao. On Skylining with Flexibleobhinance
Relation. In Proceedings of the International Conference on Data
Engineering, ICDE 2008.

M. L. Yiu and N. Mamoulis. Efficient Processing of Top-koBrinating
Queries on Multi-Dimensional Data. Broceedings of the International
Conference on Very Large Data Bases, VL2B07.

We compare the relevant performance cost of each phase for
both PrefJoin andFlexPrefalgorithms, as follow:

o Local Pruning Local Pruningphase finds the skyline

for each input relations, this phase is identical in the
both algorithms, hence it would not affect the relevant
performance.

Data Preparation In PrefJoin algorithm, we find the
dominance relation between the skyline tuples in local
preference for each relation. This cost is bounded by
O(|Sky(R)[*) and O(|Sky(S)|?) for relation R and S,
respectively. Hence, the total cost@ta Preparationis
O(|Sky(R)|* + |Sky(S)[*). However,FlexPrefdoes not
performs any data preparation.

Joining The cost of joining local preference set for
hash bucketB from relation R with the corresponding
local preference set in relatiofi, for both approaches,
is bounded byO(M.W), as the number of
tuples is S8Rl gng 1988 respectively. Hence, the
total join cost is bounded bp(w) join
operations. The cardinality of the join result is bounded
by (12 BLISky(S)]) yples,

Refining Refining phase, inPrefloin is not needed
for skyline queries, i.e.0(1), while, the cost to find
the skyline over the joined tuples is bounded by

O(—'S’“y(R”,;'S’“y(S)'Q) comparisons.

From this analysis, we deduce that our approach performs
O(|Sky(R)|* + |Sky(S)[*) comparisons iData Preparation

2 .
[Sky(R)LISky()™) comparisons.

