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Abstract—Large non-volatile memories (NVRAM) will change
the durability and recovery mechanisms of main-memory
database systems. Today, these systems make operations durable
through logging and checkpointing to secondary storage, and
recover by rebuilding the in-memory database (records and
indexes) from on-disk state. A main-memory database stored in
NVRAM, however, can potentially recover instantly after a power
failure. Modern main-memory databases typically use lock-free
index structures to enable a high degree of concurrency. Thus
NVRAM-resident databases need indexes that are both lock-free,
persistent, and able to recover (almost) instantly after a crash.
In this paper, we show how to easily build such index structures.
A key enabling component of our scheme is a multi-word
compare-and-swap operation, PMwCAS, that is lock-free, persistent,
and efficient. PMwCAS significantly reduces the complexity of
building lock-free indexes, which we illustrate by implementing
both doubly-linked skip lists and the Bw-tree lock-free B+-tree
for NVRAM. Experimental results show that PMwCAS’s runtime
overhead is very low (∼4–6% under realistic workloads). This
overhead is sufficiently low that the same implementation can be
used for both DRAM and NVRAM resident indexes.

I. INTRODUCTION

Fast, byte-addressable non-volatile memory (NVRAM) de-
vices are currently coming online in the form of NVDIMM [1],
Intel 3D XPoint [2] , and STT-MRAM [3]. NVRAM blurs
the distinction between memory and storage: besides being
non-volatile and spacious, NVRAM provides close-to-DRAM
performance and can be accessed by normal load and store

instructions. Currently, several companies ship NVRAM-N
DIMMs (flash and super-capacitor backed DRAM) with up to
32GB capacity per chip, making it an attractive medium for
main-memory database workloads.

NVRAM potentially allows almost instant recovery of a
database after a crash. A primary challenge is implementing
persistent, high-performance indexes. Several systems imple-
ment lock-free indexes to fully exploit the hardware parallelism
in modern servers: MemSQL uses lock-free skip lists [4] , while
Microsoft Hekaton uses the Bw-tree [5] , a lock-free B+-tree.

Non-trivial lock-free data-structures are already tricky to
design and implement in the volatile case. These imple-
mentations use atomic instructions such as compare-and-
swap (CAS) to coordinate interaction among threads. However,
these instructions operate on single words, and non-trivial
data structures usually require atomic updates of multiple
words (e.g., B+-tree splits). Implementing lock-free indexes
on NVRAM in this manner is even more difficult: the same
atomic instructions can still be used, but since the processor
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cache is volatile there must be a persistence protocol in place
to ensure the data structure recovers correctly after a crash.
The key is to make sure that a write is persisted on NVRAM
before any dependent reads, otherwise the index might recover
to an inconsistent state.

In this paper, we show how to build efficient lock-free
indexes for NVRAM relatively easily. The key to our tech-
nique is a persistent multi-word compare-and-swap operation
(PMwCAS) that provides atomic compare-and-swap semantics
across arbitrary words in NVRAM. The operation itself is
lock-free and guarantees durability of its modifications, even
across crashes. PMwCAS greatly simplifies the implementation
of lock-free data structures. Using PMwCAS, the developer
simply specifies the memory words to modify along with
the expected and desired values for each (similar to a single-
word CAS). PMwCAS will either atomically install all new values
or fail the operation without exposing a partially completed
operation) to other threads. PMwCAS reserves three bits (for
status information) in each target word; if three free bits are
not available, the technique cannot be used. This has not been
a problem in index implementations; target words have always
been pointers, status words, or (small) counters.

The PMwCAS operation is the key contribution of this paper
and the first implementation of a multi-word CAS operation for
non-volatile memory. It is based on the volatile MwCAS operation
by Harris et al [6] which we extend with persistence guarantees
and transparent recovery. There are two other versions of
volatile MwCAS operations [7], [8] but they are either slower
and/or more complex than the version by Harris et al.

The PMwCAS operator has several features that make it attrac-
tive for lock-free programming in an NVRAM environment.

Persistence guarantees. PMwCAS guards against tricky bugs
inherent in an NVRAM environment. For example, on persistent
memory, updating a value v using a volatile CAS can lead to
corruption. Since CAS does not guarantee persistence of v (CPU
caches are not persistent), another thread might read v and
take action (e.g., perform further writes) without guarantee
that v will become durable before a crash. Our PMwCAS

implementation ensures that readers only see persistent values.
Transparent and instant recovery. A big advantage of

PMwCAS is that users can avoid application-specific recovery
code completely. On restart after a crash, the PMwCAS library
transparently recovers the data structure to a consistent state
by completing or rolling back operations that were in flight
at the time of the crash. Recovery time is proportional to the
number of in-flight operations and virtually instant.



Simpler code. PMwCAS simplifies implementation of lock-
free data structures. Non-trivial lock-free data structures usually
requires atomically changing multiple words. This is complex
and error-prone to achieve using single-word CAS. With
PMwCAS, the implementation is almost as mechanical as a
locked based one. In addition, the same implementation can
be used in both volatile DRAM as well as NVRAM.

Simpler memory management. Lock-free programming
requires careful memory reclamation protocols, since memory
cannot be freed under mutual exclusion. Memory management
is even more difficult in an NVRAM environment. For instance,
unless care is taken, a new node that was allocated but not yet
added to the index will be leaked when the system crashes.
We have designed PMwCAS so that index implementations can
easily piggyback on its memory recycling protocol to ensure
that memory is safely reclaimed after the success (or failure)
of an operation and even after a crash.

Robust performance (compared to HTM). Recent hard-
ware transactional memory (HTM) [9] provides an alternative
to PMwCAS as it could be used to atomically modify multiple
NVRAM words. However, this approach is vulnerable to
spurious aborts (e.g., caused by CPU cache size) and still
requires application-specific recovery logic. As Section IV-E
shows, MwCAS is only 3% to 12% slower then HTM under low
contention and significantly faster under high contention.

To illustrate how PMwCAS simplifies index implementation in
NVRAM, we describe the implementation of two index types.

• A doubly-linked lock-free skip list. Skip lists are used
in a number of research and production main-memory
databases, e.g., MemSQL [4] . We detail how to implement
a persisted skip list with forward and backward links.

• The Bw-tree [5] . The Bw-tree is the lock-free B+-tree
used by SQL Server Hekaton [10] . We detail how to use
PMwCAS to simplify Bw-tree structure modifications that
span multiple nodes.

We also provide an extensive experimental evaluation of our
techniques. Using microbenchmarks, we show that PMwCAS
performs robustly and is efficient even under high-contention.
Under realistic workloads, the overhead for our persistence
version of skip lists is only ∼1–3% compared with a volatile
CAS based implementations; for Bw-tree, the overhead is 2–8%.

In the rest of this paper, Section II covers our assumptions
and the PMwCAS interface. Section III describes a single-word
persisted CAS as a basis for understanding PMwCAS (Section IV).
Section V covers NVRAM management issues. Section VI
describes our index implementations using PMwCAS, while
Section VII provides experimental evaluation. Related work is
covered in Section VIII, and Section IX concludes the paper.

II. BACKGROUND

A. System Model
We assume a single-level store model where NVRAM is at-

tached directly to the memory bus and the operating system pro-
vides access to (byte addressable) NVRAM through the memory
mapping interface. This model was also adopted by several re-
cent NVRAM based systems [11], [12], [13], [14], [15], [16] .

A single node can have multiple processors. We assume that
indexes and base data reside in NVRAM. The system may
also contain DRAM which is used as working storage.

Access to NVRAM is cached by multiple levels of volatile
private and shared CPU caches, and is subject to re-ordering
by the processor for performance reasons. Special care must
be taken to guarantee durability and ordering. This is typically
done through a combination of cache write-backs and memory
fences. In addition to memory fences and atomic 8-byte writes,
we assume the ability to selectively flush or write-back a cache
line, e.g., via the cache line write-back (CLWB) or cache line
flush (CLFLUSH) instructions on Intel processors [9] . Both of
these instructions flush the target cache line to memory but
CLFLUSH also evicts the cache line. This increases the number
of memory accesses which slow down performance.

B. The PMwCAS Operation
Our techniques rely on an efficient PMwCAS operator to

atomically change multiple 8-byte words with persistence
guarantees. The API for PMwCAS is:

• AllocateDescriptor(callback): Allocate a descrip-
tor that will be used throughout the PMwCAS operation. The
user can provide a custom callback function for recycling
memory pointed to by the words in the PMwCAS operation.

• Descriptor::AddWord(address, expected,

desired): Specify a word to be modified. The
caller provides the address of the word, the expected
value and the desired value.

• Descriptor::ReserveEntry(addr, expected,

policy): Similar to AddWord except the new value is
left unspecified; returns a pointer to the new_value

field so it can be filled in later. Memory referenced by
old_value/new_value will be recycled according to
the specified policy (details in Section V).

• Descriptor::RemoveWord(address): Remove the
word previously specified as part of the PMwCAS.

• PMwCAS(descriptor): Execute the PMwCAS and return
true if succeeded.

• Discard(descriptor): Cancel the PMwCAS (only valid
before calling PMwCAS).

The API is identical for both volatile and persistent MwCAS. In-
ternally, PMwCAS provides all the needed persistence guarantees,
without additional actions by the application.

Execution. To perform a PMwCAS, the application first allo-
cates a descriptor and invokes the AddWord or ReserveEntry
method once for each word to be modified. RemoveWord can be
used to remove a previously specified word if needed. AddWord
and ReserveEntry ensure that target addresses are unique and
return an error if they are not. After persisting the descriptor,
calling PMwCAS executes the operation, while Discard aborts
it. A failed PMwCAS will leave all target words unchanged.

The word entries in the descriptor are sorted on the address
field to prevent deadlock. The first phase of PMwCAS in effect
attempts to “lock” each target word. From concurrency control
theory, deadlocks cannot occur if all “clients” acquire locks
(or other resources) in the same order.
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Memory management. To ensure memory safety in a lock-
free environment, descriptors are recycled by the PMwCAS

and Discard functions using epoch-based reclamation (see
Section V). The user need not worry about descriptor memory.
PMwCAS is most often used to update pointers to dynamically
allocated memory. The callback parameter allows the user
to piggyback on PMwCAS’s epoch-based reclamation protocol.
The callbacks are invoked once it is determined that memory
behind each pointer is safe to be recycled. The user can provide
a recycling policy (using ReserveEntry) to specify the
circumstance under which a callback is invoked (e.g., recycling
memory pointed to by old values after the PMwCAS succeeds).

In addition to memory recycling, the PMwCAS must correctly
interact with the allocator and avoid leaking memory even if the
system crashes in the middle of a PMwCAS operation. To handle
this, ReserveEntry will return a pointer to the newly added
entry’s new value field, which can be given to a persistent
memory allocator as the target location for storing the address
of the allocated memory (similar to posix_memalign [17]).
Section V discusses the details behind memory management.

III. A PERSISTENT SINGLE-WORD CAS

To set the stage for describing our PMwCAS implementation,
we first summarize an approach to building a single-word
persistent CAS. To maintain data consistency across failures,
a single-word CAS operation on NVRAM can proceed only
if its target word’s existing value is persistent in NVRAM.
In general, inconsistencies may arise due to write-after-read
dependencies where a thread persists a new value computed as
the result of reading a value that might not be persisted. Such
inconsistencies can be avoided by a flush-on-read principle: any
load instruction must be preceded by a cache line flush (e.g.,
via CLFLUSH or CLWB [9]) to ensure that the word is persistent
in NVRAM. Flush-on-read is straightforward to implement but
sacrifices much performance. Fortunately, there is a way to
drastically reduce the number of flushes.
CAS operates on word-aligned boundaries [18] , so certain

low-order bits in the operands are always zero. For example,
the lower four bits are always zero if the operands are at least
4-byte aligned. Another source of such “vacant” bits is the
result of the “canonical address” design employed by modern
64-bit x86 processors [9] , where the microarchitecture only
implements 48 address bits, leaving the higher 16 bits unused.
These vacant bits can be used to help improve the performance
of persistent CAS: a bit can be dedicated to indicate whether
the value is guaranteed to be persistent. Throughout this paper,
we call this the “dirty” bit and in an actual implementation
it can be placed in either the high 16 bits or the low bits
due to alignment requirements. If the dirty bit is clear, the
word is guaranteed to be persistent; otherwise it might not
be persistent.1 Thus the protocol is that (1) a store always
sets the dirty bit and (2) any thread accessing a word (either
read/write) with the dirty bit set flushes it and then clears the
dirty bit to avoid unnecessary, repetitive flushes.

1Some system events (e.g., cache eviction) could implicitly persist the word.

Algorithm 1 A persistent single-word CAS.

1 def pcas_read(address):
word = *address

3 if word & DirtyFlag is not 0:
persist(address, word)

5 return word & ~DirtyFlag

7 def persistent_cas(address, old_value, new_value):
pcas_read(address)

9 # Conduct the CAS with dirty bit set on new value
return CAS(address, old_value, new_value | DirtyFlag)

11
def persist(address, value):

13 CLWB(address)
SFENCE

15 CAS(address, value, value & ~DirtyFlag)

Algorithm 1 shows how persistent CAS can be built following
this principle. The DirtyFlag is a word-long constant with
only the dirty bit set. Before executing the final CAS at line 10,
the caller must first make sure that the target word is durable
by checking if the dirty bit is set and possibly flush the word
using the CLWB [9] instruction (lines 3–4 and 13–14). Note that
after issuing CLWB, a store fence (SFENCE) is needed to ensure
correct write ordering and visibility of writes [9] . At line 15,
a CAS must be used to clear the dirty bit as (1) there may be
concurrent threads trying to also set the bit or (2) there may be
concurrent threads attempting to change the word to another
value. This step does not require a flush, however, since any
read operation of words that might participate in the persistent
CAS must be done through pcas_read in Algorithm 1.

Employing a dirty bit on the target word solves both problems
of data consistency and performance. A thread can only read a
target word after making sure the word is durable in NVRAM.
Clearing the dirty bit after flushing avoids repetitive flushing,
maintaining most benefits of write-back caching.

IV. PERSISTENT MULTI-WORD CAS

We now discuss how to implement PMwCAS using the above
principles. The key is persisting and correctly linearizing access
to the information needed by the multi-word CAS.

A. PMwCAS Overview

Each PMwCAS operation uses a descriptor that describes the
operation to be performed and tracks it status. Figure 1 (ignore
the target words for now) shows the internals of a descriptor. It
includes a status variable that tracks the operation’s progress,
an optional pointer to a callback function, and an array of word
descriptors. In the status field we employ its most significant
bit as a dirty bit to indicate whether it is modified/persisted in
NVRAM, following the same flush-on-read principle described
in Section III. Table I lists the possible status values and their
meanings. The callback function is called when the descriptor
is no longer needed and typically frees memory objects that
can be freed after the operation has completed. The callback is
not a raw function pointer (since the function may not map to
the same address after a crash). Instead, we allocate an array
for storing pointers to finalize callback functions and the array
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TABLE I: Possible values and meaning of the status field in
PMwCAS descriptor. Value of the dirty bit is omitted for brevity.

Value Meaning
Undecided The PMwCAS operation in progress.
Succeeded The PMwCAS operation succeeded.
Failed The PMwCAS operation failed.

Undecided

0x10010

RDCSS 0

addr1 old1 new1 0x100

addr2 old2 new2 0x100

1

0x12001 0

old300 0
addr3 old3 new3 0x100

PMwCAS Dirty

Target fields PMwCAS descriptor at 0x100

None

FreeOne

FreeOne

Count: 3 Callback

Word descriptors:

Fig. 1: Flag bits employed in target words (left) and an example
PMwCAS descriptor (right). Callbacks and memory policy (word
descriptor’s right-most field) are discussed in Section V.

is filled in at startup. A descriptor then refers to a callback
function by its position in the array instead of by its address.

A word descriptor contains (1) the target word’s address,
(2) the expected value to compare against, (3) the new value,
(4) a back pointer to the containing descriptor, and (5) a memory
deallocation policy that indicates whether the new and old
values are pointers to memory objects and, if so, which objects
are to be freed on completion (or failure) of the operation.

As shown on the left side of Figure 1, we use three
vacant bits to indicate whether a word contains a pointer
to a word descriptor, a pointer to a PMwCAS descriptor, and
whether the value might not be persisted. We refer to them
respectively as RDCSSFlag, PMwCASFlag, and DirtyFlag,
which are constants with only the corresponding bit set.

The example descriptor in Figure 1 is currently in the initial
Undecided status and looking to change three words. All three
word descriptors contain a back pointer to the descriptor at
address 0x100 and policy specification.

Users of PMwCAS first allocate a descriptor using the API in
Section II-B, and add per-word modifications using AddWord

or ReserveEntry. After adding all modifications, the user
persists the descriptor and performs the PMwCAS operation by
issuing the PMwCAS command (or Discard if the user wishes
to cancel). If the PMwCAS succeeded, the user is guaranteed that
all the target words were updated atomically and the new values
will persist across failures. On failure, the user is guaranteed
that none of the updates are visible to other threads.

The PMwCAS operation executes in two phases:
• Phase 1: Install a descriptor pointer in all target words.
• Phase 2: If Phase 1 succeeded, install the new values in

all target words. If Phase 1 failed, then reset any target
word that points to the descriptor back to its old value.

For a successful execution, with its initial old value, each target
word will be changed to carry in sequence:

1) A pointer to the corresponding word descriptor;
2) A pointer to the PMwCAS descriptor (if step 1 succeeds);

Algorithm 2 PMwCAS algorithm.

1 bool pmwcas(Descriptor md):
st = Succeeded

3 for w in md.words (in sorted order on md.words.address):
retry:

5 rval = install_mwcas_descriptor(w)
if rval == w.old_value:

7 # Descriptor successfully installed
continue

9 elif rval & PMwCASFlag is not 0:
if rval & DirtyFlag is not 0:

11 persist(w.address, rval)
# Clashed another on-going MwCAS, help it finish

13 pmwcas(rval.Address)
goto retry

15 else
st = Failed

17 break

19 # Persist all target words if Phase 1 succeeded
if st == Succeeded:

21 for w in md.words:
persist(w.address, md| PMwCASFlag | DirtyFlag)

23
# Finalize the MwCAS’s status

25 CAS(md.status, Undecided, st | StatusDirtyFlag)
if md.status & DirtyFlag:

27 CLWB(&md.status)
SFENCE

29 md.status &= ~DirtyFlag

31 # Install the final values
for w in md.words:

33 v = md.status == Succeeded ? w.new_value : w.old_value
expected = md | PMwCASFlag | DirtyFlag

35 rval = CAS(w.address, expected, v | DirtyFlag)
if rval == md | PMwCASFlag:

37 CAS(w.address, expected & ~DirtyFlag, v)
persist(w.address, v)

39 return md.status == Succeeded

3) The new value (if step 2 succeeds).
If any of the above steps fails, the PMwCAS operation will roll
back and the target words will be recovered to carry their
original old values.

Another thread may read a word that contains a descrip-
tor pointer instead of a “regular” value. If so, the thread
helps complete the referenced PMwCAS before continuing. The
following sections describe how PMwCAS works in detail.
Algorithm 2 shows the main PMwCAS function. Algorithm 3
gives the entry point for readers (pmwcas_read) and two helper
functions: install_mwcas_descriptor is the entry point
to install a pointer to a descriptor at a particular address,
while complete_install allows the reader to help along to
complete an in-progress PMwCAS.

B. Phase 1: Installing Descriptors

The PMwCAS first installs a pointer to the descriptor in each
target word. Along the way, it or other reads may encounter
another in-progress PMwCAS, for which it must help to complete
(Section IV-B1). It then persists the descriptor pointer writes
before determining the final operation status (Section IV-B2).

For each target word in the descriptor md, PMwCAS first
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attempts to install a pointer to md in each word (Algorithm 2
lines 3–8). This is done by the install_mwcas_descriptor

function (line 5), which is essentially a double-compare single-
swap (RDCSS) operation [6] . An RDCSS applies change to a
target word only if the values of two words (including the one
being changed) match their specified expected values. That
is, RDCSS requires an additional “expected” value to compare
against (but not modify) than CAS does.
RDCSS is a software operation, and for our purpose of

installing a PMwCAS descriptor pointer in a target word, we
expect (1) the target word to contain the old value, and (2)
the PMwCAS descriptor’s status is Undecided. The “desired”
new value for the RDCSS is a pointer to the PMwCAS descriptor.
RDCSS is necessary to guard against subtle race conditions and
maintain a linearizable sequence of operations on the same
word. Specifically, we must guard against the installation of a
descriptor for a completed PMwCAS (p1) that might inadvertently
overwrite the result of another PMwCAS (p2), where p2 should
occur after p1. This can happen if a thread t executing p1 is
about to install a descriptor in a target word a over an existing
value v, but goes to sleep. While t sleeps, another thread may
complete p1 (given the cooperative nature of PMwCAS) and
subsequently p2 executes to set a back to v. If t were to wake
up and try to overwrite v (the value it expects) in address a,
it would overwrite the result of p2, violating the linearizable
schedule for updates to a. Using RDCSS to install a descriptor
ensures not only that the target word contains the expected
value but also that the status is Undecided, i.e., that the
operation is still in progress.

Lines 1–13 of Algorithm 3 shows how RDCSS works in
detail. The install_mwcas_descriptor function (i.e., the
RDCSS operation) receives the address of a word descriptor as
the sole parameter and returns the value found in the word. It
first uses a CAS to install a pointer to the word descriptor in
the target word (lines 2–4). If the target word already points
to a word descriptor, the caller helps complete that RDCSS and
then retries its own RDCSS (lines 5–8). If the CAS succeeds, it
then sets the target word to point to the descriptor if status
is Undecided (lines 10–12 and 15–18). If the PMwCAS has
finished (status is Succeeded or Failed), the installation
fails and the target word is reset to the old value.

Figure 1 shows an example where the RDCSS has successfully
installed a pointer to the descriptor in the first target word. The
PMwCAS and dirty bits are set to indicate that the word contains
a descriptor pointer and its content might not be durable on
NVRAM. The second target word, however, still points to its
word descriptor at address 0x1202. So for this word the caller
could be executing lines 5–12 of Algorithm 3. The last target
word is yet to be changed and contains the old value.

At line 5 of Algorithm 2, install_mwcas_descriptor
returns one of the following values when trying to install
a pointer to descriptor md. (1) A regular value that equals
the expected value, signalling success. (2) A regular value

2This is 40 bytes off of the start address of the full descriptor, given a word
descriptor and status each takes 32 and 8 bytes, respectively.

Algorithm 3 Help-along and read routines for PMwCAS.

1 def install_mwcas_descriptor(wd):
ptr = wd | RDCSSFlag

3 retry:
val = CAS(wd.address, wd.old_value, ptr)

5 if val & RDCSSFlag is not 0:
# Hit another RDCSS operation, help it finish

7 complete_install(val & AddressMask)
goto retry

9
if val == desc.old_value:

11 # Successfully installed the RDCSS descriptor
complete_install(wd)

13 return val

15 def complete_install(wd):
ptr = wd.mwcas_descriptor | PMwCASFlag | DirtyFlag

17 u = wd.mwcas_descriptor.status == Undecided
CAS(wd.address, wd | RDCSSFlag, u ? ptr : wd.old_value)

19
def pmwcas_read(address):

21 retry:
v = *address

23 if v & RDCSSFlag:
complete_install(v & AddressMask)

25 goto retry

27 if v & DirtyFlag:
persist(address, v)

29 v &= ~DirtyFlag

31 if v & PMwCASFlag:
pmwcas(v & AddressMask)

33 goto retry
return v

that does not equal the expected value, signaling a lost race
with another PMwCAS that installed a new value before our
RDCSS could install the descriptor pointer. In this case the
PMwCAS fails (lines 16–17). (3) The pointer to md, i.e., another
thread successfully installed md. (4) A pointer to the descriptor
of another PMwCAS, in which case we help to complete that
operation (lines 9–14) before retrying the installation of md. In
all cases, if the return value’s dirty bit is set, we persist the
word using the persist function defined in Algorithm 1.

1) Reading Affected Words: Phase 1 exposes descriptor
pointers to any thread reading one of the target words. Similar
to MwCAS [6] , a thread does not directly read words that may
contain a descriptor pointer. It instead calls pmwcas_read

(Algorithm 3 lines 20–34) that reads the word and checks
whether it contains a descriptor pointer. If so, the function
then helps complete the operation using complete_install

or persistent_mwcas (Algorithm 2) depending on the
descriptor type. It then retries reading the word and returns
when it contains a regular value. Similar to pcas_read in
Algorithm 1, the reader must also flush the target word if the
dirty bit is set, either on a descriptor pointer or normal value.

2) Precommit: Upon completing Phase 1, a thread persists
the target words whose dirty bit is set (lines 20–22 of
Algorithm 2). To ensure correct recovery, this must be done
before updating status and advancing to Phase 2. We update
status with CAS to either Succeeded or Failed (with the
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dirty bit set) depending on whether Phase 1 succeeded or failed
(line 25 of Algorithm 2). Next, the thread persists the status

word and clears its dirty bit (lines 26–29 of Algorithm 2).
Persisting the status field “commits” the operation, ensuring
its effects survive even across power failures.

C. Phase 2: Completing the MwCAS

If Phase 1 succeeds, the PMwCAS is guaranteed to succeed,
even if a failure occurs—recovery will roll forward with the
new values recorded in the descriptor. If Phase 1 succeeded,
Phase 2 installs the final values (with the dirty bit set) in the
target words, replacing the pointers to the descriptor md (lines
32–38 of Algorithm 2). Since the final values are installed one
by one using a CAS, it is possible that a crash in the middle of
Phase 2 leaves some target words with new values, while others
point to the descriptor. Another thread might have observed
some of the newly installed values and make dependent actions
(e.g., performing a PMwCAS of its own) based on the read.
Rolling back in this case might cause data inconsistencies.
Therefore, it is crucial to persist status before entering Phase
2. The recovery routine can then rely on the status field of
the descriptor to decide if it should roll forward or backward.
The next section provides details of the recovery process.

If the PMwCAS fails in Phase 1, Phase 2 becomes a rollback
procedure by installing the old values (with the dirty bit set)
in all target words containing a descriptor pointer.

D. Recovery

Due to the two-phase execution of PMwCAS, a target word
may contain a descriptor pointer or normal value after a crash.
Correct recovery requires that the descriptor be persisted before
entering Phase 1. The dirty bit in the status field is cleared
because the caller has not started to install descriptor pointers
in the target words; any failure that might occur before this
point does not affect data consistency upon recovery.

We maintain a pool of descriptors in an application-specified
NVRAM location. Upon restart from a failure, recovery starts
by scanning the whole descriptor pool and processes each in-
flight operation. As we will discuss in Section V, descriptors
are reused and we only need to maintain a small descriptor
pool (a small multiple of the number of worker threads). Thus,
scanning the pool during recovery is not time consuming.

Recovery is straightforward: if a descriptor’s status equals
Succeeded, roll the operation forward; if it equals Failed

or Undecided, roll the operation back; otherwise do nothing.
For each descriptor md, we iterate over each target word and
check if it contains a pointer to md or to the corresponding
word descriptor. If either is the case, the old value is applied
to the word if md.status equals Undecided or Failed;
the new value is applied otherwise (i.e., when md.status

equals Succeeded). We then free memory pointed to by the
word descriptor’s expected and desired values according to the
specified policy (see Section V). The status field is then set
to Free and the descriptor is ready for reuse.

In summary, using a fixed pool of descriptors enables the
recovery procedure to easily find all in-flight PMwCAS operations
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Fig. 2: Microbenchmark results that compare HTM based and
software MwCAS (a), and show persistence overhead (b).

after a crash. Persisting the descriptor before entering Phase 1
ensures that the operation can be correctly completed and
persisting the status field after Phase 1 makes it possible
to correctly decide whether to roll the operation forward or
back. In terms of performance, an implementation of BzTree
(a B+-Tree that uses the PMwCAS for persistence on NVRAM)
recovered in 145 µs after crashing with 48 worker threads exe-
cuting the YCSB workload [19] . Such performance illustrates
that PMwCAS helps support near instantaneous recovery when
used to implement non-trivial access methods.

E. Discussion

MwCAS and transactional memory (TM) [20] provides similar
guarantees. Recent hardware TM (Intel TSX [9]) has made it
more appealing as TSX overcomes the high overhead in soft-
ware TM. But it is not directly applicable to NVRAM: in some
processor implementations TSX always aborts transactions that
flush cache lines using CLWB [9] . Nevertheless, HTM can be
used for Phase 1 of MwCAS, simplifying its implementation.
Next we use microbenchmarks evaluate both approaches, and
show the cost of persistence added by PMwCAS. In Section VII
we conduct more realistic index benchmarks.

We use a TSX-enabled workstation equipped with an Intel
Xeon E3-1245 v3 processor clocked at 3.4GHz and 32GB
of RAM. The processor has four physical cores (eight hyper-
threads) with 256KB/1MB/8MB L1/L2/L3 caches, respectively.
Although the workstation has very limited parallelism, it is
enough for us to reason about the relative merits of different
designs. We expect similar conclusions on larger machines.
The workload tries to modify multiple random words in a
fixed-size array using MwCAS, PMwCAS or HTM based MwCAS

(denoted as “HTM”). We employ three high bits in each of
these words for the flags needed by PMwCAS and MwCAS.

Figure 2a compares MwCAS and HTM-based MwCAS. We
vary the array size (100–10 million) to adjust contention level:
smaller arrays indicate higher contention. Note that the 100-
entry array occupies only 800 bytes of memory and will be
fully cache-resident. Therefore, with 1–2 threads (very low
contention) HTM-100 and MwCAS-100 could outperform the
other variants where data may not be fully cache-resident.
The 1M and 10M arrays occupy 8 and 80 MB of memory,
respectively. As a result, MwCAS-1M/HTM-1M outperform
MwCAS-10M/HTM-10M because most entries in the 1M
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array are cached. Overall, HTM outperforms MwCAS under
low contention (1M and 10M arrays) by ∼3–12% but falls
behind by up to more than 80% with 8 threads on the 100-entry
array. These results confirm the well-known observation that
TSX is vulnerable to high contention [21] .

Figure 2b shows PMwCAS’s persistence cost by comparing
it with MwCAS. PMwCAS caused ∼25–40% slow down under
high contention (100-entry array). Note that this is the worst
scenario and exaggerates the overhead, as the array is so small
that it will be completely cache-resident. The results also
exhibited similar trends for numbers between 100, 1M, and
10M arrays to those discussed previously. The overhead for
1M and 10M arrays is ∼7–17% and ∼6–15%, respectively.3

We also observed that on a larger machine with 64 threads
(details in Section VII, it does not support TSX) that PMwCAS
adds a constant amount of overhead on top of MwCAS, without
impeding its scalability. These results show that PMwCAS itself
is not an expensive operation, compared to MwCAS. Section VII
continues our evaluation using index benchmarks.

V. STORAGE MANAGEMENT

The NVRAM space stores both descriptors and user data,
i.e., the data structures being maintained, in our case, indexes.
However, indexes cannot use PMwCAS efficiently without proper
storage management of dynamically allocated NVRAM. Words
modified by PMwCAS often store pointers to memory acquired
from a persistent allocator [22], [23] . The memory allocated
should be owned by either the allocator or the data structure
and not be left “hanging” after a crash. We designed PMwCAS to
help avoid such memory leaks. Next we first detail descriptor
management, and then discuss how PMwCAS ensures safe
transfer of memory ownership.

A. Descriptor Management

We maintain a pool of descriptors in a dedicated area on
NVRAM. The pool need not be big: it only needs to be large
enough to support a maximum number of concurrent threads
accessing a data structure (usually a small multiple of the
hardware thread count). This scheme has several benefits. First,
it aids recovery by having a single location to quickly identify
PMwCAS operations that were in progress during a crash. Second,
it gives more flexibility on storage management. The descriptor
pool and data areas can be managed differently, depending on
the user’s choice, e.g., using different allocation strategies.

Allocation. Most lock-free data structures (including non-
trivial ones like the Bw-Tree and a doubly-linked skip list)
only require a handful (2–4) of words to be changed atomically.
We thus fix the maximum number of target addresses in each
descriptor. This allows us to treat the descriptor pool as a fixed
sized array. With this scheme we can also support various
descriptor size classes, with each class maintaining a different
number of max target addresses. In this case we maintain a

3We use a separate background process to maintain a shared memory space as
“NVRAM.” The application attaches to it upon start. This allows us to test
recovery, but costs extra resources, as shown by performance drop with eight
threads for PMwCAS variants. With real NVRAM such drop will not ensue.

fixed-size array for each class. We divide descriptor allocation
lists into per-thread partitions and only allow threads to “borrow”
from other partitions if its list is depleted.

Descriptor recycling. One thorny issue in lock-free environ-
ments is detecting when memory can be safely reclaimed. In
our case, we must be sure that no thread dereferences a pointer
to a descriptor (swapped out in Phase 2) before we reclaim
its memory. We use an epoch-based resource management
approach [24] to recycle descriptors. Any thread must enter
an epoch before dereferencing descriptors. The epoch value
is a global value maintained by the system and advanced by
user-defined events, e.g., by memory usage or physical time.
After Phase 2, when the descriptor pointer has been removed
from all target addresses, we place its pointer on a garbage
list along with the value of the current global epoch, called
the recycle epoch. The descriptor remains on the garbage list
until all threads have exited epochs with values less than the
descriptor’s recycle epoch. This is sufficient to ensure that
no thread can possibly dereference the current incarnation of
the descriptor and it is free to reuse. The descriptor being
removed from the garbage list first transitions to the Free

status. It remains so and does not transition into the Undecided
status until it is ready to conduct another PMwCAS. Employing
the Free status aids recovery: without it, a crash happened
during descriptor initialization will cause the recovery routine
to wrongfully roll forward or back.

A nice feature of having a descriptor pool is that garbage lists
need not be persistent: they are only needed for safety during
multi-threaded execution. Recovery, being single threaded, can
scan the entire descriptor pool and does not need to worry about
other concurrent threads accessing and changing descriptors.

B. User Data Management

We assume the memory area for user data is managed by a
persistent memory allocator, which must be carefully crafted
to ensure safe transfer of memory ownership. The problem is
best explained by the following C/C++ statement for allocating
eight bytes of memory: void *p = malloc(8);. At runtime,
the statement is executed in two steps: (1) the allocator reserves
the requested amount of memory and (2) stores the address of
the allocated memory in p. Step (2) transfers the ownership
of the memory from the allocator to the application. When
step 2 finishes, the application owns the memory. A naive
implementation that simply stores the address in p could leak
memory if a failure happens before p is persisted in NVRAM
or if p is in DRAM. After a crash, the system could end up
in a state where a memory block is “homeless” and cannot be
reached from neither the application nor the allocator.

One solution is breaking the allocation process into two steps:
reserve and activate, which allocates memory and transfers its
ownership to the application, respectively [22] . The allocator
ensures crash consistency internally for the reservation step.
This is opaque to the application and is not the focus of this
paper. However, the application must carefully interact with the
allocator in the activation process, through an interface (pro-
vided by the allocator) that is similar to posix_memalign [17]
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TABLE II: Recycle policies and example usages. With epoch-based reclamation, the same epoch manager provides pointer
stability for both data and descriptor. The “free” operations only happen after no thread is using the memory to be recycled.

Policy Meaning Example Usage
None No recycling needed. Change non-pointer values.
FreeOne Free the old (or new) value memory if the PMwCAS succeeded (or failed). Install a consolidated page in the Bw-tree.
FreeNewOnFailure Free the new value memory if PMwCAS failed; do nothing if succeeded. Insert a node into a linked list.
FreeOldOnSuccess Free the old value memory if PMwCAS succeeded; do nothing if failed. Delete a node from a linked list.

which accepts a reference of the target location for storing the
address of the allocated memory. This design is employed by
many existing NVRAM systems [13], [15], [22], [23], [25] .
The application owns the memory only after the allocator
has successfully persisted the address of the newly allocated
memory in the provided reference.

Building a safe and correct persistent allocator is out of the
scope of this paper. Our focus is making PMwCAS work with
existing allocators that expose the above interface, to guarantee
safe memory ownership transfer. Without PMwCAS, a lock-free
data structure would use the persistent CAS primitive described
in Section III and must handle possible failures in step 2. Since
this approach does not guarantee safe transfer of memory
ownership, it could significantly increase code complexity.

1) Safe Memory Ownership Transfer in PMwCAS: To avoid
memory leaks we use PMwCAS descriptors as temporary owners
of allocated memory blocks until they are incorporated into
the application data structure. As described earlier, we assume
an allocation interface similar to posix_memalign [17] that
passes a reference of the target location for storing the address
of the allocated memory. In our case we require that the
application pass to the allocator the address of the new_value

field in the word descriptor of the target word. Memory is
owned by the descriptor after the allocator has persistently
stored the address of the memory in the new_value field.

During recovery, the memory allocator runs its recovery
procedure first. We assume that allocator recovery results in
every pending allocation call being either completed or rolled
back. As a result, all the “delivery addresses” contain either the
address of an allocated memory block or a null pointer. After
the allocator’s recovery phase, we begin PMwCAS’s recovery
mechanism to roll forward or back in-flight PMwCAS operations
as described in Section IV-D.

Reclamation. Lock-free data structures must support safe
memory reclamation, given that deallocation is not protected
by mutual exclusion. In other words, threads can dereference a
pointer to a memory block even after it has been removed from
a data structure [26] . By allowing the application to piggyback
on our descriptor recycling framework, we free the application
from implementing its own memory reclamation mechanism.

In lock-free implementations, memory chunks pointed to by
the old_value or new_value fields normally do not acquire
new accesses if the PMwCAS succeeded or failed, respectively.
We allow an application to specify a memory recycling policy
for each target word. The policy defines how the memory
pointed to by the old_value and new_value fields should
be handled when the PMwCAS concludes and no thread can
dereference the corresponding memory (based on the epoch

1. palloc(p1, size);

2. palloc(p2, size);

+

Complex, error-prone 

recovery code

1. Descriptor *d = AllocateDescriptor();

2. p1 = d->ReserveEntry(a1, o1, FreeOne);

3. palloc(p1, size);

4. p2 = d->ReserveEntry(a2, o2, FreeOne);

5. palloc(p2, size);

(a) CAS-based approach. (b) With PMwCAS, no custom recovery logic.

Fig. 3: Comparison of CAS and PMwCAS based approaches.

safety guarantee discussed previously). The policy is stored
in an additional field in the word descriptor. The different
recycling options are described in Table II.

Instead of specifying per-word policies, the application can
provide a customized “finalize” function to be called when a
descriptor is about to be recycled. This is useful for applications
that need more control over the memory deallocation process.
For example, instead of simply calling free() on a memory
object, an object-specific destructor needs to be called.

Example. Figure 3 shows an example of allocating and
installing two words using (a) a single-word persistent CAS
and (b) PMwCAS. In Figure 3(b), the application first allocates
a PMwCAS descriptor (line 1) and then reserves a slot in the de-
scriptor using ReserveEntry (lines 2 and 4). ReserveEntry
works exactly the same as AddWord except that it does not
require the application to pass the new value and will return a
reference (pointer) to the new_value field of the newly added
entry. The reference is further fed to the allocator (lines 2
and 5) for memory allocation. The application also specifies
a FreeOne recycle policy when calling ReserveEntry: if
the PMwCAS succeeded, then the memory pointed to by the
old_value field will be freed (respecting epoch boundaries);
otherwise the new_value will be freed.

2) Discussion: Our approach frees the application from
implementing its own memory recycling mechanism, which
tends to be complex and error-prone. Typically, the application
only needs to (1) allocate a PMwCAS descriptor, (2) initialize
each word descriptor using ReserveEntry and specify a
recycling policy, (3) pass a reference to the newly-allocated
entry’s new_value field to the allocator, (4) initialize the newly
allocated memory object and, when all word descriptor have
been filled in, (4) execute the PMwCAS. When the PMwCAS

concludes, the dynamically-allocated memory associated with
it will be recycled according to the recycle policy specified.
No application-specific code is needed.
PMwCAS makes it easier to transform a volatile data structure

into a persistent one without having to write application-
specific recovery code; the only requirement is the application
use PMwCAS to transform the underlying data structure from
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one consistent state to another, which is usually the case.
Upon recovery, PMwCAS’s recovery procedure proceeds as
Section IV-D describes, and deallocates memory that is no
longer needed. The application needs no explicit recovery
code, nor memory management code during recovery. The
only limitation is that one must use PMwCAS even if the
operation is single-word in nature for safe memory ownership
transfer. For the volatile case, however, one is free to use single-
word CAS to avoid the overhead of maintaining descriptors.

VI. CASE STUDIES

Now we demonstrate the use of PMwCAS to simplify the
implementation of two highly concurrent indexes on NVRAM:
a doubly-linked skip list [27] and the Bw-tree [5] . We use
key-sequential access methods since they are ubiquitous (all
databases need to support range scans efficiently). They also
require non-trivial efforts to achieve high performance. Of
course, the use of PMwCAS applies beyond indexing; one can
use it to ease the implementation of any lock-free protocol that
requires atomically updating multiple arbitrary memory words.

A. Doubly-Linked Skip List

Overview. A skip list can be thought of as multiple levels
of linked lists. The lowest level maintains a linked list of
all records in key-sequential order. Higher level lists consist
of a sparser subsequence of keys than levels below. Search
starts from the top level of a special head node, and gradually
descends to the desired key at the base list in logarithmic time.
To implement a lock-free singly-linked (unidirectional) skip
list, a record is inserted into the base list using a CAS. At this
point the record is visible since it will appear in a search of
the base list. If the new key must be promoted to higher-level
lists, this can be done lazily [27] .

Implementation complexity. It is straightforward to imple-
ment a lock-free singly-linked skip list, but it comes at a price:
reverse scan is often omitted or supported inefficiently. Some
systems “remembers” the predecessor nodes in a stack during
forward scan and use it to guide a reverse scan. A more natural
solution is making the skip list doubly-linked, with a next and
previous pointer in each node. While efficient, this requires
complex hand-in-hand CAS operations at each level [28] .

Using CAS to implement lock-free doubly-linked skip lists
is complicated and error-prone. The state-of-the-art method
first uses a CAS to insert a node at each level, setting up only
the next pointers. A second phase then tries to install the
previous pointers using a series of CAS operations [28] . The
complexity comes from the second phase having to detect races
with simultaneous inserts and deletes that interfere with the
installation of the previous pointer. If such a race is detected, the
implementation must fix up and retry the operation. A majority
of the code from this approach is dedicated handling such
races. Earlier designs [29], [30], [31] often sacrifice features
(e.g., deletion) for easier implementation.

Implementation using PMwCAS. In our implementation,
each node points to its predecessor and successor in the
same level, and to the lower level node in the same tower.

Inserting (deleting) a node involves first inserting (deleting)
in the base level, and then inserting (deleting) upper level
nodes containing the record key. For a volatile implementation,
one can use PMwCAS (with persistence guarantees disabled)
to atomically install a node n in each doubly-linked list by
atomically updating the next pointer at n’s predecessor and
previous pointer at n’s successor. Compared to our CAS based
implementation, the PMwCAS based variant reduced the lines
of code by 24% and is almost as easy as a lock-based one,
evidenced by a 43% reduction on cyclomatic complexity.4

The transition from volatile to persistent implementation is
seamless. The core insert/delete logic remains the same, but
with additional memory management code described in Sec-
tion V-B. All index nodes must be allocated using a persistent
allocator to ensure persistence and proper ownership handoff.
Since PMwCAS always transforms the skip list from one consis-
tent state to another, we use the default recovery and memory
reclamation mechanisms (Section V) to maintain data consis-
tency across failures. No customized recovery code is needed.
For a new node insertion, we use the FreeNewOnFailure

policy to ensure the new node is reclaimed if the PMwCAS fails.
For delete, we use FreeOldOnSuccess to recycle the deleted
node after the PMwCAS succeeds.

B. The Bw-Tree

Overview. The Bw-tree [5] is a lock-free B+-tree. It
maintains a mapping table that maps logical page identifiers
(LPIDs) to virtual addresses. All links between Bw-tree nodes
are LPIDs; a thread traversing the index must use the mapping
table to translate LPIDs to pointers. The Bw-tree uses copy-
on-write to update pages. An update creates a delta record
describing the update and prepends it to the target page.
Deltas are installed using a CAS that replaces the current page
address in the mapping table with the address of the delta.
Figure 4a depicts a delta update to page P ; the dashed line
represents P ’s original address, while the solid line represents
P ’s new address. Pages are consolidated once a number of
deltas accumulate on a page to prevent degradation of search
performance. Consolidation involves creating a new compact
(search-optimized) page with all deltas applied that replaces
the old page version using a CAS (Figure 4b).

Implementation complexity. Structure modification opera-
tions (SMOs) such as page splits and merges cause complexity
in the Bw-tree, since they introduce changes to more than one
page and we cannot update multiple arbitrary nodes using a CAS.
The Bw-tree breaks an SMO into a sequence of atomic steps;
each step is installed using a CAS to a single page. Figure 4c
depicts the two-phase split for a page P . Phase 1 selects a
separator key K, generates a new sibling page Q and installs a
“split delta” on P that logically describes the split and provides
a side-link to the new sibling Q. Phase 2 inserts K into the
parent node O by posting a delta containing (K, LPID) with
a CAS. Deleting and merging pages in the Bw-tree follow a
similar process with three atomic steps (details covered in [5]).

4A quantitative measure of the number of linearly independent code paths [32] .
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Fig. 4: Bw-tree lock-free page update and split. Split is broken
into two atomic CAS operations on the mapping table.

While highly concurrent, the Bw-tree contains several subtle
race conditions as a result of the SMO protocol. For example,
threads can observe “in progress” SMOs, so the implementation
must detect and handle such conflicts. A Bw-tree thread that
encounters a partial SMO will “help along” to complete it
before continuing with its own operation. Also, in-progress
SMOs can “collide,” and without care lead to index corruption.
A prime example is that simultaneous splits and merges on
the same page could collide at the parent. This happens, for
instance, when a thread t1 sees an in-progress split of a page
P with new sibling Q and attempts to help along by installing
a new key/pointer pair for Q at a parent O. In the meantime,
another thread t2 could have deleted Q and already removed
its entry at O (which was installed by another thread t3). In
this case t1 must be able to detect the fact that Q was deleted
and avoid modifying O. A large amount of code (and thought)
is dedicated to detecting and handling subtle cases like these.

Implementation using PMwCAS. We use PMwCAS to
simplify Bw-tree’s SMO protocol and reduce the subtle races
just described. The approach “collapses” the multi-step SMO
into a single PMwCAS. We use page split as a running example;
a page delete/merge follows a similar approach. For a volatile
implementation, a split of page P first allocates a new sibling
page, along with memory for both the split and index deltas.
It then uses PMwCAS (with persistence disabled) to atomically
install the split delta on P and the index delta at the parent.
The split may trigger further splits at upper levels, in which
case we repeat this process for the parent. PMwCAS allows us
to cut all the help-along code in the CAS based implementation
and reduces cyclomatic complexity of SMOs by 24%.

For a persistent implementation, similar to the skip list case,
the logic for the SMOs remains the same, but the code must
conform to correct memory-handling procedures. For each new
page allocated (the new page Q along with split and index
deltas), we reserve a slot in the descriptor and pass the persistent
allocator a reference to the reserved slot’s new_value field.
For reclamation, we use FreeNewOnFailure to ensure the
new memory is recycled if the PMwCAS fails.

Some Bw-tree SMOs are single-word in nature, e.g., in-
stalling a delta or consolidating a page. In the volatile case, we
can safely use CAS as long as it does not use PMwCAS’s flag bits.
But in the persistent case using CAS loses the safe persistence
guarantee as the transfer of memory ownership will be unknown
to the descriptor. Therefore, we use PMwCAS even for single-
word updates for the persistent Bw-tree implementation.

VII. EVALUATION

A. Experimental Setup

The goal of our experiments is to evaluate the impact of
synchronization mechanism on index structures. We run experi-
ments on a quad-socket machine with four Intel Xeon E5-4620
processors clocked at 2.2GHz and 512GB of main memory.
Each CPU has eight physical cores and 256KB/2MB/16MB
L1/L2/L3 caches, respectively. With hyper-threading the server
gives in total 64 hardware threads. We target flash-backed
NVDIMMs [1] which exhibits exactly the same performance
characteristics as DRAM at runtime. So we run all experiments
in normal DRAM. Each run is repeated three times and we
report the average across these runs.

Intel is expected to release 3D XPoint DIMMs during 2018.
At the time of writing, we do not have access to it. While
the underlying memory technology is slower than DRAM, the
overall effect on performance is difficult to estimate. The write
latency, as seen by an application, should be the same as DRAM
because data only has to make it to the memory controller’s
write buffer to be “safe” (though an application may generate
more write traffic to ensure that modifications are persisted).
Read latency, as seen by an application, is expected to be
3-5x higher than DRAM but some of this will be mitigated
by caches; to what extent depends on cache and working set
sizes. A more detailed evaluation will have to wait until real
hardware becomes available.

B. Workloads and Index Implementations

We implement the Bw-tree and skip list as standalone record
stores that support insert/upsert, delete, get, and scan. We vary
the percentage of each operation in the benchmark to test
individual and mixed operations. The mixed workload follows
a 4:1 read/write ratio and a 4:1 point read/range scan ratio
(20% write, 64% get and 16% scan). We use 8-byte keys, 8-
byte values, and initialize both indexes with 10 million records.
The PMwCAS uses a descriptor size class of four (the max size
needed for both indexes) and a decriptor pool size of 1K.

Following the designs described in Section VI, we imple-
mented and evaluate three variants of the Bw-tree and doubly-
linked skip list using CAS, volatile MwCAS, and PMwCAS. The
CAS and MwCAS variants are completely volatile. While the
PMwCAS variant guarantees persistence, it does not issue any
CLWB instruction as described in previous algorithms because
the processor does not support it. To give an upper bound
of the persistence overhead, we show the performance of a
“PMwCAS-CF” variant, which is the same as PMwCAS except that
it issues CLFLUSH to “persist” target words. CLFLUSH evicts
the cache line while writing it back to NVRAM, and future
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Fig. 5: Bw-tree (a–d) and skip list (e–h) performance with 8-byte keys and 8-byte values.

processors are expected to feature the CLWB instructions that
do not evict the cache line [9] . With PMwCAS-CF, we measure
the worst-case overhead for persistence.

C. Bw-Tree Results

This section compares the impact of synchronization primi-
tives on the Bw-tree. Figures 5a–5c show the results for read,
upsert and delete operations, respectively. All the variants show
similar performance for the read-only workload (Figure 5a).
Since the workload is read-only, compared to the CAS-based
variant, the only extra work needed by MwCAS and PMwCAS is
setting/checking the flags bits. Such overhead is minuscule;
we observed similar results for skip list in Section VII-D.

Figure 5b plots the throughput for upserts as we vary the
number of concurrent threads on the x-axis. As the figure shows,
MwCAS is relatively cheap for multi-word operations. The only
SMO that changes multiple words atomically in an upsert-only
workload is page split. Recall that for volatile MwCAS in the
Bw-tree, we employ CAS internally to conduct single-word
operations. Therefore, the performance difference exhibited by
CAS and MwCAS is purely due to multi-word operations. As
the figure shows, the overhead of MwCAS is small (at most
∼2%). Supporting persistence using PMwCAS requires one use
single-entry PMwCAS, adding ∼15% of overhead compared
to MwCAS, regardless of the amount of concurrency across
the x-axis. Therefore, PMwCAS’s persistence machinery adds a
fixed amount of overhead and does not affect the scalability
of MwCAS. Finally, by comparing the performance of PMwCAS
and PMwCAS-CF, we observed that CLFLUSH could degrade
throughput by more than 30%. This is the worst case scenario
and underlines the need of a high-performance cache line
write-back mechanism, such as CLWB.

Figure 5c summarizes the delete-only benchmark, where each
thread deletes an equal amount of randomly-chosen records,
leaving an empty tree when all threads finish. The overall trend
is similar to what we observed in the upsert-only benchmark,
however, the margin is smaller. Figure 5d gives the throughput
for the mixed workload. Since the workload has more reads,
it exhibits smaller differences among the evaluated variants.
Compared to the best-performing CAS variant, PMwCAS incurs

on average ∼6% of overhead. We believe the significant ease
of programming efforts justify such low overhead.

These results show that for the Bw-tree, MwCAS imposes little
overhead (but largely simplifies the implementation). PMwCAS
adds persistence without changing the index code for an existing
MwCAS based variant, and does so by adding a small overhead.

D. Skip List Results

The skip list experiments use the same workload settings as
those used in the Bw-tree experiments. Figures 5e–5g depict
the throughput for individual operations. The relative trends
between different synchronization primitives are similar to
those for the Bw-tree. All variants perform similarly under the
pure-read workload. For workloads that consist of inserts and/or
deletes (Figures 5f–5g), CAS is consistently faster than MwCAS

by an average of ∼12%, while in the Bw-tree experiments
MwCAS and CAS have similar performance. The reason is
that unlike the Bw-tree in which insert/delete involves only
appending a delta record that can be done via a single-word
CAS, both insert and delete must atomically change two pointers
atomically at each level, thus making the skip list unable to
use CAS internally for inserts or deletes and save the cost of
maintaining MwCAS descriptors and the flag bits. The PMwCAS

variant again exhibits similar trend to that in the Bw-tree
experiments. Compared to the CAS-based variant, they perform
on average 13% slower. With a realistic workload (Figure 5h),
such difference becomes smaller (∼3–8%). Similar to what
we have seen in previous Bw-tree experiments, the CLFLUSH

impact is large, stressing the need for instructions like CLWB.

VIII. RELATED WORK

Multi-word CAS. We demonstrate MwCAS’s usefulness on
lock-free indexes for both volatile and non-volatile memory.
To our knowledge, PMwCAS is the first MwCAS proposal for
NVRAM. We based it on the volatile MwCAS by Harris et
al. [6] because of its simplicity and good performance. Other
MwCAS designs exist [7], [8] , but are either considerably more
complex or do not perform as well as the design by [6] .

Transactional memory. Compared to software TM [33],
HTM exhibits much lower overhead, but often comes with
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constraints that limit its usefulness, such as limited transaction
size [21] . We also explored HTM drawbacks in Section IV-E.

Lock-free indexes. Lock-free indexes are usually built with
single-word CAS and must deal with various races as a result
concurrent accesses. We focused on easing the difficulty of
implementing doubly-linked skip list [27], [28], [34], [35] and
the Bw-tree [5] . Masstree [36] is a trie of B+-trees designed
to achieve good cache behavior and scalability. ART [37], [38]
is also a trie-based memory-optimized index.

Persistent indexes. Chen et al. [39] presented and analyzed
metrics for B+-trees on NVRAM. The concurrent CDDS [14]
B-tree avoids logging using global version numbers. The wB+-
Tree [11] reduces the amount of cache line flushes by only
keeping the leaf nodes sorted. NV-Tree [16] also only keeps
the leaf nodes sorted but re-constructs internal index nodes
when needed. The FPTree [13] is a hybrid index that puts leaf
nodes in NVRAM and internal nodes unsorted in DRAM.

NVRAM systems. Most systems use logging and require
custom recovery logic [12], [15], [40] . In contrast, PMwCAS
employs the dirty bit design and avoids logging using pooled
descriptors. Izraelevitz et al. [41], [42] proposed a framework
for reasoning about the correctness of data structures in
NVRAM and a single-word CAS based mechanism for building
persistent data structures. PMwCAS can work with any NVRAM
allocator [22], [23], [43], [25] that provides proper interfaces
to guarantee safe transfer of memory ownership.

IX. CONCLUSION

Building lock-free data structures is a challenging task,
especially for NVRAM. Traditional approaches rely on single-
word CAS and implement custom recovery logic in addition
to handling complex races. Our contribution is a persistent
multi-word compare-and-swap (PMwCAS) primitive that can
atomically change multiple 8-byte words in a lock-free manner.
PMwCAS provides a middle ground between CAS and lock-
based programming, with the former’s high performance and
the latter’s ease of use. PMwCAS provides safe persistence
guarantees, and frees the developer from devising complex
and error-prone recovery logic needed in existing NVRAM
systems. Moreover, the same index implementation can be used
for both the DRAM and NVRAM resident indexes. We adapted
the volatile CAS-based Bw-tree and doubly-linked skip list to
NVRAM using PMwCAS. The result is competitive performance
with persistence guarantees, transparent recovery support, as
well as code that is easy to maintain and reason about.
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