
FlexPref: A Framework for Extensible Preference Evaluation

in Database Systems

Justin J. Levandoski Mohamed F. Mokbel Mohamed E. Khalefa

University of Minnesota Department of Computer Science and Engineering

Need for Preference Functionality Inside the DBMS

The FlexPref Approach

The list goes on and on and on…

Top-K [VLDB99]

Skyline [ICDE01]

K-Dominance [SIGMOD06]

K-Frequency [EDBT06]

Top-K Domination [VLDB07]

Quick Exercise

1. Go to Google Scholar

2. Search for papers on preference evaluation methods

3. How many results do you get back?

SELECT *

FROM Restaurants R

WHERE R.AllowsGroups = True;

Injecting Preference

Functionality

SELECT *

FROM Restaurants R

WHERE R.AllowsGroups = True

PREFERRING MIN R.Price,

MAX R.Rating,

MIN R.WaitTime,

MIN TravelTime(User.Location, R.Location)

What is the

Query Answer?

How to Challenge

the meaning of

“Best Answers”?

What

Preference

Method?

Many Multi-Objective Preference Evaluation Methods

Implementing Preference Functions in

a DBMS: Existing Approaches

Preference Evaluation

Top-K

Skyline

K-Dominance

K-Frequency

Top-K Dom

DBMS

DBMS is a

“black box” to

the preference

method

Severe performance

limitations:

1. Evaluate SQL query

2. Evaluate preference

function

DBMS knows

nothing about

semantics of

preference method

Almost all

proposed

algorithms take this

approach

The Layered (On-Top) Approach

Query Processor

DBMS

Index

Top-K

Single-Table Join

Index Optimizations

Skyline

JoinSingle-table

Index Optimizations

K-Dominance

…

…

Each preference

method hand-

coded inside

query

processor. This

can get ugly! Attempted for top-k

with success. Very

little work

addresses skyline.

No work addresses

other methods.

Must figure out

how to couple

preference

evaluation with

join, selection,

etc. Not easy!

Several

thousands of

lines of code for

each method

The Built-In Approach

Simplicity: easy to implement

Limited Efficiency: cannot interact with DBMS internals, thus no query optimization

Efficient: methods tightly coupled with DBMS

Infeasible: cannot provide custom implementation for every preference method

Query Processor

DBMS

Index

FlexPref

Top-K

Skyline

K-Dominance

K-Frequency

Top-K Dom

Modify query

processor only once

“Plug and Play”

paradigm

Preference method

automatically coupled with

database operators (join,

selection, index scan)

Orders of magnitude

less code than built-in

approach

Comparable

performance to

built-in approach

Simplicity of the layered approach: easy to implement

Efficiency of the built-in approach: methods tightly coupled with DBMS

MyPref.c

Query Processor

Top-K

Skyline

K-Dominance

K-Frequency

MyPref

FlexPref

1. Define two macros and three

functions in separate

“MyPref.c” file outside

DBMS/FlexPref

2. Compile into FlexPref

using command:
DefinePreference

MyPref with MyPref.c

Architecture Preference Implementation

SELECT * FROM Restaurants

WHERE …

PREFERRING Price P, Distance D, Rating R

USING Skyline OBJECTIVES MIN P, D, MAX R

SELECT * FROM Restaurants

WHERE …

PREFERRING Price P, Distance D, Rating R

USING TopKDom WITH K=5 OBJECTIVES MIN P,D, MAX R

SELECT *

FROM Restaurants R

WHERE [Where_clause]

PREFERRING [Attribute List]

USING MyPref Objectives [Preference Objectives]

SELECT * FROM Restaurants

WHERE …

PREFERRING Price P, Distance D, Rating R

USING TopK WITH K=5 OBJECTIVES MIN Func(P,D,R)

Writing Queries

Query Processing

Answer

Restaurants

Id P D R

1 2 5 6

2 3 6 8

3 5 1 7

FlexPref

Selection

FlexPref offers generic query processing support for the

following operators, written in terms of three functions
and two macros

Experimental Analysis

Input: Single Table T

Output Preference set S

Preference Set S  NULL

For each object P in T

P.score = #DefaultScore

for each Object Q in T

cmp  PairwiseCompare(P,Q)

if (cmp ==1)

if Q is in S then remove Q

if #isTransitive

then discard Q from T

if (cmp == -1)

if #isTransitive

then discard P from T

read next object P

if (IsPreferredObject(P,S))

then AddToPreferredSet(P,S)

Return S

Restaurants

Id P D R

1 2 5 6

2 3 6 8

3 5 1 7

Hotels

Id P R

4 9 9

5 4 7

6 3 2

FlexPref

Join

Answer

FlexPref

Sorted List

Answer

Price

Id P

1 2

2 3

3 5

Distance

Id D

3 1

1 5

2 6

Rating

Id D

1 6

3 7

2 8

~200 lines

of code

~300 lines

of code

~8,000 lines of code

Preference evaluation with binary join

FlexPref Join v. Built-in Selection v. Built-in Join

PairwiseCompare(Object P, Object Q)

INPUT: Two objects P and Q

ACTION: Update the score of P

RETURN: 1 if Q can never be a preferred object

-1 if P can never be a preferred object
0 otherwise

IsPreferredObject(Object P, PreferenceSet S)

INPUT: A data object P and a set of preferred objects S

RETURN: True if P is a preferred object and can be added to S

False otherwise

AddPreferredToSet(Object P, PreferenceSet S)

INPUT: A data object P and a set of preferred objects S

ACTION: Add P to S and remove or rearrange objects from S

#define DefaultScore

Default score assigned to

each object
#define IsTransitive

Whether preference
function is transitive or not

*This work is supported in part by the National Science Foundation under Grants IIS0811998, IIS0811935, CNS0708604, and by a Microsoft Research gift

