
CareDB: A Context and Preference-Aware

Location-Based Database System

Justin J. Levandoski

Supervised by: Mohamed F. Mokbel
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

{justin,mokbel}@cs.umn.edu

Abstract— In this paper, we aim to realize a context and
preference-aware database system, CareDB, that provides scal-
able personalized location-based services to users based on their
preferences and current surrounding context. Unlike existing
location-based database systems that answer queries based solely
on proximity in distance, CareDB considers user preferences and
various types of context in determining the answer to location-
based queries. To this end, CareDB does not aim to define new
location-based queries, instead, it aims to redefine the answer
of existing location-based queries. The PhD thesis topics covered
in this paper solve novel, core systems issues that help realize
CareDB. These issues are: (1) efficient and extensible core DBMS
query processor support for numerous preference evaluation
methods, (2) core dbms support for preference query processing
in the face of expensive contextual data, and (3) support for
continuous preference and context-aware query processing.

I. INTRODUCTION

Location-based services aim to provide new services to their

users based on the knowledge of their locations. Examples of

these services include live traffic reports (“Let me know if there

is congestion within five minutes of my route”), emergency

response (“Dispatch the nearest five police cars to the crime

seen”), and store finders (“Where is my nearest restaurant”).

A recent report from ABI Research indicated that the number

of location-based services subscribers will be 315 Million by

2011 [1]. The flood of information generated by location-

detection devices, along with the large number of mobile users

of location-based services, calls for the integration of location-

based service functionality with database systems.

Unfortunately, the system semantics of location-based

databases are rigid as concepts of user “preference” and

“context” are ignored. For example, when a user looks for

a restaurant, she actually wants to find the “best” restaurant

according to her current preferences and context. Existing

location-based query processors reduce the meaning of “best”

to be the “closest” in terms of pre-computed distances. If

desired, preferences and/or context parameters are applied as

afterthought queries over the returned result from location-

based queries. The rigidness of current location-based query

processors can be shown with a simple example where a

user asks for five restaurants. After retrieving the answer

(the nearest five restaurants), the user discovers that the first

This work is supported in part by the National Science Foundation under
Grants IIS0811998, IIS0811935, CNS0708604, and by a Microsoft Research
Gift

restaurant has an undesirably long wait, while the second

restaurant does not match the user’s dietary restrictions. The

third restaurant is outside of the user’s budget, while the fourth

restaurant is closed. Finally, the route to the fifth restaurant is

infeasible due to a traffic accident. Location-based services

should be useful, and a more useful set of answers could

have been given in the previous example had the database

considered user preferences (e.g., dietary restrictions, budget)

and contexts (e.g., time of day, traffic, waiting times).

The goal of my PhD thesis to enable the practical realization

of location-based services that embed forms of preference

and context in the core query processor of the database

sysetem. Thus, we aim not to define new location-based

queries, instead, we aim to redefine the answer of existing

traditional location-based queries by incorporating various

types of preferences and context. Due to resource limitations

on mobile devices (e.g., small screen), and the fact that users

may be in unstable situations (e.g., driving), it is of essence

to enhance the quality of the answer and limit the answer to

only useful tuples according to user preferences and context.

Toward the goal of embedding support for preference

and context at the core of DBMS, my thesis proposes the

CareDB system: a context and preference-aware location-

based database system. Specifically, my thesis studies three

novel core systems challenges in realizing CareDB:

1) Supporting various preference evaluation methods (e.g.,

skyline, top-k, k-dominance) at all levels of the query

processor in a generic extensible manner, including core

query operators (e.g., selection and join).

2) Integrating surrounding contextual data (e.g., current

traffic, weather) in core preference query processing.

Contextual data calls for retrieving some attributes from

computationally-intense sources (e.g., third-parties), re-

quiring efficient preference evaluation methods aware of

this new cost model.

3) Supporting the distinguishing characteristics of location-

based services that include continuous queries and dy-

namic query optimizations in our generic and extensible

preference and context-aware query processing engine.

CareDB is a complete database system, meaning all ideas in

this thesis have been realized and experimentally evaluated in

the PostgreSQL open-source database system. The rest of this

paper further describes CareDB and its novel contributions.

User

Result

Data Sources

CareDB

Building

Preference− and

and Optimization

.
.
.
.

Query Processing

. . . .

. . . .

. . . .

. . . .

.
.
.
.

Queries

Query

DB−specific

. . . .

m
Data

2
Data

1
Data

Query

Context

Context−Aware

n
User

2
User

1
User

and Context

User Preferences
Environmental

Context

Fig. 1. CareDB Architecture

II. CAREDB SYSTEM OVERVIEW

Figure 1 gives an overview of the CareDB architecture.

Input. Besides queries, CareDB takes preference and con-

textual data as input. Preferences are specified by a user and

stored in a profile. For example, whenever a user searches for

a restaurant, her profile may store preferences for travel time,

price, rating, and dietary restrictions. CareDB is extensible,

therefore the stored preference semantics are determined by

the available preference functions implemented in the query

processor (covered in Section III). CareDB has three input

context types: user context, database-specific context, and

environmental context. Each context can be either static (rarely

changed) or dynamic (frequently changing). Static/dynamic

context is depicted by solid/dotted lines and dark/light gray

rectangles, respectively, in Figure 1. User context is any extra

information about a user. Static user context data can include

income, profession, and age while dynamic attributes include

current user location or status (e.g., “at home”, “in meeting”).

Database context refers to data sources (e.g., restaurant, hotel,

and taxi databases) that are registered with CareDB. As an

example, for a restaurant database, static context data includes

price, rating, and operating hours while dynamic context

includes current waiting time. Environmental context is any

information about surrounding environment, assumed to be

stored at a third party and consulted by the query processor.

A dynamic environmental context includes road traffic, while

a relatively static context includes weather information.

Query processing. Upon receiving a query, CareDB first

injects the query with the stored user preferences. The query

is also injected with any contextual data specific to a user (e.g.,

status) or relevant to the query (e.g., traffic if user is driving).

The preference and context-aware query processing and

optimization engine is responsible for executing the query. The

main novelty of CareDB, and this thesis, lies in this query

processing engine. The main responsibilities of this module

are to: (1) Embed various types of preference and context-

awareness into the existing core of a database system, coupling

preference evaluation with traditional database operators (Sec-

tion III). (2) Support the integration of context-aware query

processing, potentially involving expensive calls to third-party

contextual data sources (Section IV). (3) Support continuous

query processing efficiently by making use of shared execution

and incremental evaluation (Section V).

CareDB

Query Processor

FlexPref

Skyline

Top-K

MyPref

Fig. 2. FlexPref architecture

III. EXTENSIBLE SUPPORT FOR PREFERENCE METHODS IN

THE CareDB QUERY PROCESSOR

CareDB is extensible to a number of existing, and fu-

ture, preference evaluation methods (e.g., skyline, top-k, k-

dominance). Thus, a primary challenge involves pushing the

semantics of each of these methods inside the DBMS query

processor in order to realize efficient preference query pro-

cessing. One approach is to create a user-defined-function

that evaluates preference on-top of a query plan. A second

approach is to create a custom implementation for each pref-

erence method that can be integrated with query operators.

CareDB takes a third approach by implementing FlexPref [2],

a general and extensible framework for implementing prefer-

ence evaluation methods inside the query processor. Figure 2

relates the main idea of FlexPref. The framework is built into

the PostgreSQL query processor. Only FlexPref touches the

query processor. Each new preference method added to the

system is “plugged into” our‘ framework by registering only

four general functions (defined outside the query processor).

The main idea behind this framework is separation of du-

ties. (1) The registered functions, specific to each preference

method, define the essence of the preference criteria. These

functions define how one object is qualitatively better than the

other. These functions are not aware of the details of the query

processor. (2) The generalized framework is responsible for

efficient preference query processing by injecting preference

evaluation as close to the native data operators as possible

(i.e., scans, joins). With FlexPref, a preference evaluation

method can “live” inside the query processor with minimal

implementation effort compared to a custom approach.

CareDB does not assume data exists in a single table

or specialized index in order to execute preference evalu-

ation methods, meaning it must provide efficient execution

for arbitrary preference queries involving traditional database

operations (e.g., joins). Thus, FlexPref is injected into the

following operators. (1) Selection. The FlexPref selection

algorithm evaluates the set of preferred objects from a single

table. (2) Join. The FlexPref join algorithm enables efficient

preference evaluation for data that exists in multiple tables.

The main idea behind this join operation involves using the

general functions to prune tuples from the join input that are

guaranteed not to be in the final answer, thus limiting the

amount of data that needs to be joined. (3) Index access.

FlexPref exploits sorted data from indexes (e.g., B+ tree)

by processing sorted attributes in round-robin fashion, and

stopping I/O once a stopping condition, provided by the

registered general functions, has been met. The main idea is

that complete preference answer generation can be guaranteed

after reading only a portion of the sorted data, thus reducing

the I/O overhead compared to query processing over unsorted

or non-indexed data.

IV. QUERY PROCESSING WITH EXPENSIVE CONTEXTUAL

DATA IN CareDB

Context data is any extra data that can help refine preference

query answers. For example, traffic data can help predict

travel time to a restaurant for a location-based restaurant/store

finder. CareDB assumes most context data (1) is computed

by a third-party entity, (2) involves extensive computation and

communication relative to processing local data, and (3) is

computed in a state-less manner, i.e., assumes any third-

party entity will not have knowledge of previous CareDB

requests. The CareDB query processor is designed to take

these challenges into account by providing efficient prefer-

ence query processing over contextual data. Furthermore, this

query processing framework is general, capable of handling a

number of preference methods (e.g., skyline, multi-objective).

The goal of preference query processing over contextual

data is to minimize unnecessary requests for expensive con-

textual attributes, i.e., requests for expensive attributes not

belonging to records in the final preference answer. A naive

approach requests all necessary data from a remote source,

and computes the preference answer using existing preference

algorithms that assume all local data. This approach is un-

necessarily expensive, as it makes the maximum amount of

unnecessary requests.

CareDB takes a more efficient approach for preference

query processing over expensive contextual data, consisting

of three phases. Phase I This phase takes as input the dataset

D, and forms an initial query answer (abbr. Sc) by running

the preference query over the local (i.e., “cheap”) attributes,

while also ensuring that objects in Sc are guaranteed to be

in the final query answer. Then, it performs a random access

request to retrieve the “expensive” attributes for objects in Sc.

Phase I does not incur unnecessary requests as it retrieves only

the expensive attributes for those objects that are guaranteed to

be in the final answer. Phase II: This phase takes as input the

dataset D from Phase I and performs three main operations:

(a) Making a range request to retrieve the expensive attributes

for a small sample of objects that are not in the initial answer

Sc, (b) Creating a pruning set P by combining the returned

objects from the range request with some of the objects in Sc.

A set of objects M ⊆ (P−Sc) are added to the final preference

answer at this point. (c) Using P to prune a set of incomplete

objects L (i.e., objects without their expensive attributes) that

are guaranteed not to be in the final answer regardless of

their expensive attribute values. Thus, the efficiency of this

framework depends on maximizing the number of objects in

L, as the query processor can skip requests (i.e., expensive

computation and communication) for objects in L. Phase III:

This is a final cleaning phase takes as input the dataset

(D−L), and computes a final answer by first making a random

request for objects in D − (L ∪ Sc) without their contextual

(i.e., expensive) attributes. These remaining objects are then

cleaned, a process that discards dominated objects. Any non-

cleaned objects are added to the final preference answer Sc.

Ideally, Phase III is unnecessary as all incomplete (and non-

preferred) objects would be pruned by Phase II.

V. CONTINUOUS QUERIES IN CareDB

Many traditional database applications rely on snapshot

queries that are terminated once the answer is returned to

the user. Conversely, location-based applications make use of

both snapshot and continuous queries, that stay active at the

server side until explicitly terminated. Traditional location-

based continuous queries react to two types of dynamic data:

(1) Moving objects, where movement of the queried data

causes changes to the answer, and (2) Moving queries, where

movement of the user query, and not necessarily the queried

data, causes changes to the answer. In addition to moving

objects and moving queries, CareDB handles a third query

paradigm: changes in contextual and preference data. In this

paradigm, changes in context or preference data may cause a

query answer to change, even if object and query locations

remain stable.

Due to long-running continuous queries, location-based

databases employ two main query processing paradigms.

(1) Incremental evaluation. The incremental evaluation

paradigm only evaluates changes to the query answer, rather

than repetitively re-evaluating a query. In current systems,

incremental evaluation takes place based on changes to the

location of a query or object. (2) Shared execution. The shared

execution paradigm shares common data between queries, in

location-based databases, this task is abstracted by a join

between a set of queries and data objects. Currently, only

object location is shared between queries in location-based

databases. CareDB adds the notion of context and preference

to the incremental evaluation and shared execution paradigms.

VI. RELATED WORK

Following several theoretical works for expressing user

preferences in database systems [3], [4], [5], recent systems

have been developed to include preference and context in

databases. Examples of these systems include PREFER [6],

PreferenceSQL [7], Personalized queries [8], and contextual

database [9], [10], [11]. The PREFER system [6], [12] incor-

porates preferences into a single weighted ranking function

where preferred results are generated by finding pre-computed

materialized views whose weight function is similar to the

query. PreferenceSQL [7], [13] provides new constructs for

expressing preference in SQL, rules for combining preferences

in a cascading or pareto-accumulation manner, and rules

for translating PreferenceSQL into traditional SQL queries.

Personalized queries [14], [8], [15] model preferences using

a degree of interest score, where queries are injected with

mandatory and secondary preferences based on this score.

The resulting query is built using traditional SQL constructs.

Contextual database [9], [10], [11] focuses on modeling

 0

 5

 10

 15

 20

 25

 30

 35

 40

10:10 30:30 50:50 70:70 90:90

T
im

e
 (

s
e
c
)

Join Ratio

JFlexSKY
CustSKY

JCustSKY

(a) Skyline

 0

 2

 4

 6

 8

 10

 12

 14

10:10 30:30 50:50 70:70 90:90

T
im

e
 (

s
e
c
)

Join Ratio

JFlexKDOM
CustKDOM

(b) K-Dominance

Fig. 3. Join experiment: FlexPref vs. a specialized approach

contextual preferences, and integrating context into query

definitions. CareDB distinguishes itself from all these systems

as it: (a) provides a full-fledged realization of preference and

context-aware databases, (b) goes beyond preference modeling

and query rewriting to address processing preferences and

context at the query operator levels, (c) exploits a built-in

approach where the preference and context-aware processing

are embedded inside core processing of query operators,

unlike other systems that build personalization and context-

management modules on-top of existing relational databases,

and (d) CareDB is equipped with the necessary modules that

support the special characteristics of location-based servers,

e.g., continuous queries and dynamic environments.

VII. INITIAL EXPERIMENTAL PERFORMANCE

To demonstration the feasibility and advantages of CareDB,

this section provides a preliminary experiment that shows the

benefit of FlexPref (Section III). The experiment implements

both the skyline and k-dominance preference method within

FlexPref, denoted FlexSKY , FlexKDOM , respectively. We

also implemented the skyline operator (CustSKY) [16], the

two-scan K-dominance algorithm (CustKDOM) [17], and the

the custom skyline join operator (JCustSKY) [18] in order

to fairly evaluate the FlexPref ’s multi-relational preference

execution framework. FlexPref, along with JCustSKY [18],

are implemented in the backend executor of the PostgreSQL

8.3.5 open-source database [19]. All other algorithms are im-

plemented as extensible user-defined functions in PostgreSQL,

the fairest implementation method for our counterparts as they

are designed to execute on-top of a query plan.

Figures 3(a) and 3(b) give the runtimes for skyline and k-

dominance methods, respectively, for a binary join as the join

ratio increases, i.e., the cardinality of both input tables (with

1K distinct keys) increases from 10K to 100K. These results

clearly highlight the advantages of FlexPref. The optimized

FlexPref implementations exhibit scalable behavior as the

join ratio (and data size) increases. FlexPref is superior to

the CustSKY and CustKDOM methods that represent an on-

top approach for the multi-table case. Both CustSKY and

CustKDOM cannot reduce the input to the join, thus must pro-

cess the complete join result. Interestingly, JFlexSKY exhibits

comparable performance to the custom skyline join JCustSKY .

These results are promising, and show that (1) FlexPref is

clearly advantages for arbitrary DBMS queries compared to

an outside (or on-top) approach and (2) competitive with

specialized approaches for more sophisticated queries.

VIII. CONCLUSION

This paper outlined a PhD thesis that proposes CareDB, a

full-fledged location-based DBMS capable of scalable pref-

erence and context-aware query processing. The basic ar-

chitecture was first presented that provided the input (user

preferences and differing contexts) and query processing ob-

jectives of CareDB. Three core systems challenges, necessary

to realizing CareDB, along with initial approaches to solving

these challenges were presented. These challenges include

(1) supporting various preference methods inside the query

processor in a generic extensible manner, (2) providing the

query processor with a general framework to efficiently pro-

cess preference queries in the face of (some) contextual data

attributes that require extensive computational and commu-

nication costs, and (3) supporting continuous preference and

context-aware queries in CareDB. The novelty of CareDB was

demonstrated by classifying the state-of-the-art related work

in preference and context query processing. Finally, initial

experimental evidence was given demonstrating the feasibility

and advantages of CareDB’s built-in approach to preference

and context-aware query processing.

REFERENCES

[1] “ABI Research. GPS-Enabled Location-Based Services
(LBS) Subscribers Will Total 315 Million in Five Years.
http://www.abiresearch.com/abiprdisplay.jsp?pressid=731. September,
27, 2006.”

[2] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa, “FlexPref: A
Framework for Extensible Preference Evaluation in Database Systems,”
in ICDE, 2010.

[3] R. Agrawal and E. L. Wimmers, “A Framework for Expressing and
Combining Preferences,” in SIGMOD, 2000.

[4] J. Chomicki, “Preference Formulas in Relational Queries,” TODS,
vol. 28, no. 4, pp. 427–466, 2003.

[5] M. Lacroix and P. Lavency, “Preferences: Putting More Knowledge into
Queries,” in VLDB, 1987.

[6] V. Hristidis, N. Koudas, and Y. Papakonstantinou, “PREFER: A System
for the Efficient Execution of Multi-parametric Ranked Queries,” in
SIGMOD, 2001.

[7] W. Kießling, “Foundations of Preferences in Database Systems,” in
VLDB, 2002.

[8] G. Koutrika and Y. Ioannidis, “Personalization of Queries in Database
Systems,” in ICDE, 2004.

[9] K. Stefanidis and E. Pitoura, “Fast Contextual Preference Scoring of
Database Tuples,” in EDBT, 2008.

[10] K. Stefanidis, E. Pitoura, and P. Vassiliadis, “A Context-Aware Prefer-
ence Database System,” International Journal of Pervasive Computing

and Communications, vol. 3, no. 4, pp. 439–460, 2007.
[11] ——, “Adding Context to Preferences,” in ICDE, 2007.
[12] V. Hristidis and Y. Papakonstantinou, “Algorithms and Applications

for Answering Ranked Queries using Ranked Views,” VLDB Journal,
vol. 13, no. 1, pp. 49–70, 2004.

[13] W. Kießling and G. Köstler, “Preference SQL: Design, Implementation,
Experiences,” in VLDB, 2002.

[14] G. Koutrika and Y. Ioannidis, “Constrained Optimalities in Query
Personalization,” in SIGMOD, 2005.

[15] G. Koutrika and Y. E. Ioannidis, “Personalized Queries under a Gener-
alized Preference Model,” in ICDE, 2005.

[16] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline Operator,” in
ICDE, 2001.

[17] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang, “Finding
k-Dominant Skylines in High Dimensional Space,” in SIGMOD, 2006.

[18] W. Jin, M. Ester, Z. Hu, and J. Han, “The Multi-Relational Skyline
Operator,” in ICDE, 2007.

[19] “PostgreSQL: http://www.postgresql.org.”

