
PermJoin: An Efficient Algorithm for Producing Early 
Results in Multi-join Query Plans

Justin J. Levandoski

 

Mohamed E. Khalefa

 

Mohamed F. Mokbel
University of Minnesota Department of Computer Science

Join Algorithms for Emerging Environments

General Approaches PermJoin

 

Architecture

Scientific Simulation Sensor Networks

Moving Object Environments

Remote Source A

Query

Remote Source B

Remote Source C

Web-Based Data Aggregation

Goal: Produce early query feedback in new and emerging environments
Constraints

o

 

Streaming data: not all data available beforehand
o

 

Sources may block
o

 

Traditional join algorithms optimized to produce entire result
Applications

o

 

Web-based environment with slow and bursty

 

input with streaming data
o

 

Sensor networks
o

 

Scientific simulations taking days to produce large-scale results with need for early 
results

We introduce an efficient algorithm for Producing Early Results in Multi-join query plans (PermJoin, for short). While most previous research focuses 
only on the case of a single join operator, PermJoin

 

addresses query plans with multiple join operators. PermJoin

 

is optimized to maximize the early 
overall throughput and to adapt to fluctuations in data arrival rates. PermJoin

 

is a non-blocking operator that is capable of producing join results even

 

if one or more data sources block due to slow or bursty

 

network behavior. Furthermore, PermJoin

 

distinguishes itself from all previous techniques as 
it: (1) employs a new flushing policy to write in-memory data to disk, once memory allotment is exhausted, in a way that helps increase the probability 
of producing early result throughput multi-join queries, and (2) employs a novel state manager module that adaptively switches operators between 
joining in-memory data and disk-resident data in order to maximize overall throughput.

Single-join query plans: Hash-merge Join

Multi-join query plans: PermJoin

Join AB

Join ABC

Join 
ABCD

Source A Source B

Source C

Source D

Join Result

Main Idea
o

 

Collect statistics during query 
runtime for input sources and 
data on disk

Memory Flushing
o

 

Consider data at each 
operator equally, flush data 
least beneficial to query plan

State Manager
o

 

Place each operator in optimal 
state to produce high 
throughput: in-memory, on-

 

disk, or temporary blocking

Source B

Join Result

On-Disk 
Sorting and 

Merging

In-Memory 
Hashing

Source Unblocked

Both Sources Block or End of Data

Memory 
Full or End 

of Data
Source A Data Flow

Data FlowData Flow

Disk

Disk

In-Memory Join

Join disk-resident 
data

Join
Result

State 
Manager

Low
Priority

Incoming 
Data

Buffer

Observed and 
Collected 
Statistics

Fl
us

h

Join operator can be in three

 

states
•

 

In-memory 
•

 

Joining memory-resident data
•

 

On-disk
•

 

Joining disk-resident data
•

 

Low priority
•

 

Producing results only if 
resources are available

Consider incoming tuple Rs
•

 

If operator not in-memory 
•

 

Rs temporarily buffered
•

 

If operator in-memory
•

 

Rs joined with memory-resident 
data immediately

Flushing: AdaptiveGlobalFlush State Manager

In-Memory Join

1

2

N

…

1

2

N

…

Hash Table A Hash Table B

Source A

hash(A)

(1)(2)

Source B

hash(B)

(1) (2)

Join Result

In-Memory: Symmetric-Hash Join
•

 

Incoming tuple r at Source A
•

 

Compute hash(r)
•

 

Probe table B (produce results)
•

 

Store in table A
•

 

Symmetric operator for Source B
On-Disk: Sort-Merge Join
•

 

Join different groups
•

 

Example: a1,1 and b1,2

•

 

No need to join similar groups
•

 

Example: a1,1 and b1,1

On-Disk Join

4h1 7 9 1 6
a1,1 a1,2

1h1 4 2 6
b1,1 b1,2

7

Source A Source B

Before Merge In-memory Results: (4,4), (6,6)

After Merge On-Disk Results: (1,1), (7,7)

1h1 4 6 7 9 1h1 2 4 6 7

Source A Source B

Used once hash table memory exhausted
Consider all operators in query plan
Flush partition groups
o

 

Symmetric partitions from both sources
Based on three characteristics of in-memory data
o

 

Global contribution: the ability to produce overall results
o

 

Arrival patterns: changes in data arrival rates at each 
partition group

o

 

Data properties: join attribute distribution or whether data 
is sorted

Continuous process
Traverse query plan to determine optimal state for 
each operator
Fundamentally different than flush algorithm
o

 

Flushing evicts least-valuable in-memory data
o

 

Due to changing nature of query, on-disk data 
may become valuable later in query runtime
o

 

State manager attempts to find this data to 
increase early throughput, changing each 
operator to the appropriate state


	PermJoin: An Efficient Algorithm for Producing Early Results in Multi-join Query Plans

